
Wyliodrin Studio Documentation
Release 2.2.3-beta

Diana Ghindaoanu

May 30, 2021

Contents

1 Getting Started 5

2 Boards Setup 9

3 General Architecture of Wyliodrin STUDIO 43

4 Extension methods 53

5 Deploy Application 61

6 Wyliodrin Studio API 67

7 How to write a plugin 97

8 Translations 115

9 Dialogs and Notifications 119

10 Emulators 127

11 Simulators 131

Index 143

i

ii

Wyliodrin Studio Documentation, Release 2.2.3-beta

Wyliodrin STUDIO is an educational platform for software and hardware development for IoT and Embedded Linux
systems.

The application has been built as an extendable framework. The main architecture is a collection of plugins that
add functionality. This approach has been chosen as different devices have very different ways of connecting and
interacting with the computer and/or the browser.

The plugin system allows Wyliodrin STUDIO to be very flexible and extendable. Adding features such as supported
devices or languages and event very different new functionalities is a matter of writing a new plugin.

The purpose of Wyliodrion STUDIO is to help its users deploy industrial IoT application, gain IoT knowledge and
offer customized results in the same domain, by providing them a series of professional solutions:

• Connect to devices using TCP/IP or serial port

• Develop software and firmware for IoT in several programming languages

• Shell access to the device

• Import and export Wyliodrin STUDIO projects

• Visual dashboard for displaying sensor data

• Display the hardware schematics

• Manage packages for Python and Javascript

• Task manager for managing the device

• Network connection manager for the device (Ethernet and WiFi)

• Interactive electronics documentation (resistor color code)

• Example projects and firmware

• Wyliodrin API documentation in C/C++, Python and Javascript

Contents 1

Wyliodrin Studio Documentation, Release 2.2.3-beta

For the moment, the devices supported by the platform are:

• Raspberry Pi

• MicroPython

• UDOO Neo

• BeagleBone Black

Also, the recognized programming languages at the time are:

• Javascript

• Python

• C/C++

• Rust

• Shell Script (bash)

2 Contents

Wyliodrin Studio Documentation, Release 2.2.3-beta

• Visual Programming (translates to Python)

Contents 3

Wyliodrin Studio Documentation, Release 2.2.3-beta

4 Contents

CHAPTER 1

Getting Started

Wyliodrin STUDIO is avalable in two versions: an offline or downloadable one and a web version.

1.1 Download the application

For Windows users:

Wyliodrin STUDIO beta_Windows 64 bit

For Linux users:

Wyliodrin STUDIO beta_Linux 64 bit

For Mac OS users:

Wyliodrin STUDIO beta_macOS

5

https://wyliodrin-studio.s3.us-east-2.amazonaws.com/Wyliodrin+STUDIO+Setup+2.0.6-beta.exe
https://wyliodrin-studio.s3.us-east-2.amazonaws.com/Wyliodrin+STUDIO+2.0.6-beta.AppImage
https://wyliodrin-studio.s3.us-east-2.amazonaws.com/Wyliodrin+STUDIO-2.0.6-beta.dmg

Wyliodrin Studio Documentation, Release 2.2.3-beta

1.2 Use the web version

You also have the possibility to run and use a browser version of Wyliodrin Studio, by copying the following link into
your browser address bar:

beta.wyliodrin.studio

1.3 Build from source

If you wish to contribute to the improvement of the application or if you want to add your own features or plugins, our
code is open source, which means you can clone it from our Github.

To download the source code, you must have a GitHub account. Open a terminal, choose the folder where you want
to clone our repository and run the following command:

git clone https://github.com/wyliodrinstudio/WyliodrinSTUDIO

There are 2 methods to build and run the application:

To build the STANDALONE version, you will have to run the following commands:

npm install
npx electron-rebuild
npx webpack
npm run electron

To run the STANDALONE version , you will have to run the following command:

npm start

To build BROWSER version, you will have to delete the build folder, run:

npm install
npx webpack --config=webpack.browser.config.js
cd build
npm install

To run the BROWSER version , you will have to run the following command:

npm start

Once the application was installed and built, you can make changes on our source code, in order to improve it.

6 Chapter 1. Getting Started

Wyliodrin Studio Documentation, Release 2.2.3-beta

1.3. Build from source 7

Wyliodrin Studio Documentation, Release 2.2.3-beta

8 Chapter 1. Getting Started

CHAPTER 2

Boards Setup

2.1 Raspberry Pi

This will show how to set up a Raspberry Pi device.

9

Wyliodrin Studio Documentation, Release 2.2.3-beta

2.1.1 Video

A quick video explaining how to connect the Raspberry Pi. A detailed tutorial is available below.

2.1.2 Download the pre-configured image

The easiest way to set up a Raspberry Pi board so that it becomes available for Wyliodrin STUDIO is to download an
image that is already configured.

Download the image for Raspberry Pi Zero and Raspberry Pi 1.

Download the image for Raspberry Pi 2, Raspberry Pi 3 and Raspberry Pi 4.

Once the image downloaded and unziped, the only thing that you have to do is to flash it. After that, you can simply
insert the SD card into the Raspberry Pi and your board should be visible within Wyliodrin STUDIO.

2.1.3 Set up the board manually

However, you can also choose to configure the required image by yourself.

This will imply flashing an image with the OS (Raspbian), installing the STUDIO Supervisor container and setting up
some configuration files.

Download the Raspbian image

You will need to:

1. Download a Raspberry Pi Image

2. Install the Studio Supervisor

3. Setup a provisioning file

Raspbian is provided in two flavors, Desktop and Lite. The first one is packed with all the desktop user interface and
applications while the second one contains only the minimum OS without any applications. The second one is just
what we want for Studio, as we will deploy all the applications that want.

Download the Raspbian Lite image from the Raspberry Pi foundation. This is the standard OS for the Raspberry Pi
provided by the manufacturer.

10 Chapter 2. Boards Setup

https://wyliodrinstudio.s3.eu-central-1.amazonaws.com/images/wyliodrin_studio_raspberrypi_zero_2020_11_17.zip
https://wyliodrinstudio.s3.eu-central-1.amazonaws.com/images/wyliodrin_studio_raspberrypi_2020_11_17.zip
https://wyliodrinstudio.s3.eu-central-1.amazonaws.com/images/wyliodrin_studio_raspberrypi_2020_11_17.zip
https://wyliodrinstudio.s3.eu-central-1.amazonaws.com/images/wyliodrin_studio_raspberrypi_2020_11_17.zip
https://www.raspberrypi.org/downloads/raspbian/

Wyliodrin Studio Documentation, Release 2.2.3-beta

Flash the image

The downloaded image needs to be flash (written) to an SD card. The minimum size of the SD card is 4 GB.

Note: We recommend a minimum of 8 GB Class 10 SD Card. For small applications 4 GB might be enough.

To flash the image, you will need a special software. The recommended application is Etcher.

Note: For Linux users, you may use the dd utility.

Install STUDIO Supervisor

To be able to access the Studio network, the Raspberry Pi needs to run the STUDIO Supervisor software. The following
tutorial will explain how to install it.

After writing the SD Card, insert it into the Raspberry Pi and start the Raspberry Pi. You will have to access it. This
can be done either by:

• connecting the Raspberry Pi to the network and use a SSH to connect to it (If you are using Raspberry Pi Zero
and you want to use SSH, you will need an USB-OTG adapter to get connected to the network.)

• connect a monitor and a keyboard to the Raspberry Pi

Note: Using the SSH will require to enable it before. Insert the SD card into your computer. One (or two if Linux)
partitions will show up. On the FAT partition (the first one), create and empty file named ssh.

Install Dependencies

The dependencies you will have to install are:

• supervisor: allows you to monitor processes related to a project

• redis: database management system

• build-essential: reference package for all the packages required for compilation

• git: required for the npm install command to download git included package

• python3-pip: python 3 programming language

• docker: containerization technology

sudo apt-get update
sudo apt-get install -y supervisor redis build-essential git python3-pip docker-ce
→˓docker-ce-cli containerd.io

(continues on next page)

2.1. Raspberry Pi 11

https://www.balena.io/etcher/

Wyliodrin Studio Documentation, Release 2.2.3-beta

(continued from previous page)

To enable the Notebook tab, you should also run
sudo pip3 install redis pygments

Note: If the docker feature does not work, you can install it manually following the steps that can be found in Install
Docker manually

Install Node.js

The next step is to install NodeJS, considering the model of Raspberry Pi that you are using.

For Pi Zero and Pi 1, you will need the ARMv6 version of Node.js, so you will run the following commands:

wget https://nodejs.org/dist/v10.16.3/node-v10.16.3-linux-armv6l.tar.xz

tar xvJf node-v10.16.3-linux-armv6l.tar.xz

cd node-v10.16.3-linux-armv6l

sudo cp -R * /usr

sudo ln -s /usr/lib/node_modules /usr/lib/node

cd ..

rm -rf node-v10.16.3-linux-armv6l

For Pi 2, Pi 3 and Pi 4 models, the ARMv7 version of Node.js is required, meaning that the bash commands are:

wget https://nodejs.org/dist/v14.15.1/node-v14.15.1-linux-armv7l.tar.xz

tar xvJf node-v14.15.1-linux-armv7l.tar.xz

cd node-v14.15.1-linux-armv7l

sudo cp -R * /usr

sudo ln -s /usr/lib/node_modules /usr/lib/node

cd ..

rm -rf node-v14.15.1-linux-armv7l

12 Chapter 2. Boards Setup

https://nodejs.org/en/download/
https://nodejs.org/dist/v10.16.3/node-v10.16.3-linux-armv6l.tar.xz
https://nodejs.org/dist/v10.16.3/node-v10.16.3-linux-armv7l.tar.xz

Wyliodrin Studio Documentation, Release 2.2.3-beta

Install studio-supervisor

In order to install studio-supervisor, the following commands are required:

sudo su -
npm install -g --unsafe-perm studio-supervisor

exit
sudo mkdir /wyliodrin

Write the supervisor script

Using nano editor, write the /etc/supervisor/conf.d/studiosupervisor.conf file with the following contents:

To start the editor, type

sudo nano /etc/supervisor/conf.d/studio-supervisor.conf

[program:studio-supervisor]
command=/usr/bin/studio-supervisor raspberrypi
home=/wyliodrin
user=pi

Press Ctrl+X to save and exit the editor. Press Y when whether to save the file.

After that, you have to make the /wyliodrin directory your home directory:

sudo chown pi:pi /wyliodrin
cp /home/pi/.bashrc /wyliodrin/.bashrc

The final step is to refresh the board by running the command:

sudo supervisorctl reload

Install Docker manually

In order to install Docker, the following commands are required: .. code-block:: bash

sudo apt-get update && sudo apt-get upgrade curl -fsSL https://get.docker.com -o get-docker.shgit config
–global user.email “youremail@yourdoma sudo sh get-docker.sh sudo usermod -aG docker pi

Now, you’ll have to restart the board using: .. code-block:: bash

sudo reboot

To see if the installation worked, check the Docker version: .. code-block:: bash

docker version

Note: For raspberry pi 0 , in order to work, after your first try to create a container, you have to go to the menu, select
Use Advanced Mode and, in the dockerfile, change the default image with: FROM /balenalib/raspberry-pi-node:14.

2.1. Raspberry Pi 13

https://get.docker.com
mailto:youremail@yourdoma

Wyliodrin Studio Documentation, Release 2.2.3-beta

2.1.4 Connecting via web

The connection of a Raspberry Pi board to the web version of Wyliodrin STUDIO demands an Internet connection and
the creation of a file, wyliodrin.json, that will be written and stored on the SD card. The purpose of this configuration
file is to keep a series of particular informations about the device and the platform, so the both instances be able to
recognize and communicate with each other.

Acquiring the wyliodrin.json file assumes that you will have to launch the web version of the application and to click
on the Connect button. After selecting the New Device option from the popup, a new dialog box will be opened and
will ask you for the name of your new device.

Once you start typing the name of your device, a JSON structure is automatically generated depending on the entered
data. The format of the object consists of the following properties:

Property title Description
token unique identifier for the device, automatically assigned by the program
id device name, updated as you change the name in the input box
server endpoint

The content of this JSON structure has to be copied into a file that you will name wyliodrin.json, as mentioned before.
Once the file created and saved, it has to be stored on the SD card, in the partition called boot. This action can be
done by inserting the flashed card into your personal computer, which will lead to the automatic opening of the boot
partition.

After copying the configuration file to the destination indicated, you can insert the SD card into the Raspberry Pi,
connect the board to the Internet and power it on. At this step, if you hit the Connect button of the web application,
you should see your Raspberry Pi device into the list of available devices and by clicking on its name you will be able
to connect it to the IDE.

14 Chapter 2. Boards Setup

Wyliodrin Studio Documentation, Release 2.2.3-beta

2.1.5 Wyliolab Board

If you are using the Wyliolab boards, you can download the pre-configured image for Pi Zero and Pi 1, or the image
for Pi 2, Pi 3 and Pi 4.

If you choose to continue the manual setup for the Raspberry Pi of the Wyliolab board, you should run the following
commands:

sudo pip3 install wyliozero

sudo su -
npm install -g --unsafe-perm studio-supervisor

exit
sudo nano /etc/supervisor/conf.d/studio-supervisor.conf

[program:studio-supervisor]
command=/usr/bin/studio-supervisor raspberrypi wyliolab
home=/wyliodrin
user=pi

2.1. Raspberry Pi 15

https://wyliodrinstudio.s3.eu-central-1.amazonaws.com/images/wyliodrin_studio_raspberrypi_zero_wyliolab_2019_11_27.zip
https://wyliodrinstudio.s3.eu-central-1.amazonaws.com/images/wyliodrin_studio_raspberrypi_wyliolab_2019_11_27.zip
https://wyliodrinstudio.s3.eu-central-1.amazonaws.com/images/wyliodrin_studio_raspberrypi_wyliolab_2019_11_27.zip
https://wyliodrinstudio.s3.eu-central-1.amazonaws.com/images/wyliodrin_studio_raspberrypi_wyliolab_2019_11_27.zip

Wyliodrin Studio Documentation, Release 2.2.3-beta

After modifying the content of the studio-supervisor.conf file, you will have to run:

sudo raspi-config

In the prompt that will be opened, you will have to select the fifth option(Interfacing Options), then in the Configuration
Tool section you will have to pick P6 Serial in order to disable the shell and enable the serial port.

The final step before using the Wyliolab board is to reboot it.

2.1.6 Set up wireless

To set up your board wireless, please follow the steps in the link: Set up wireless:.

2.2 Beaglebone Black

This tutorial will show you how to set up a Beaglebone Black device.

16 Chapter 2. Boards Setup

https://www.raspberrypi.org/documentation/configuration/wireless/headless.md

Wyliodrin Studio Documentation, Release 2.2.3-beta

2.2.1 Download the pre-configured image

The easiest way to set up a BeagleBone Black board so that it becomes available for Wyliodrin STUDIO is to download
an image that is already configured.

Download the image for BeagleBone Black.

Once the image downloaded and unziped, the only thing that you have to do is to flash it. After that, you can simply
insert the SD card into the BeagleBone Black and your board should be visible within Wyliodrin STUDIO.

2.2.2 Set up the board manually

However, you can also choose to configure the required image by yourself.

This will imply flashing an image with the OS (Debian), installing the STUDIO Supervisor container and setting up
some configuration files.

Download the Debian image

You will need to:

1. Download a Debian Image

2. Install the Studio Supervisor

3. Setup a provisioning file

Download the Debian IoT image from the Beagle Board foundation. This is the standard OS for the BeagleBone Black
provided by the manufacturer.

Flash the image

The downloaded image needs to be flash (written) to an SD card. The minimum size of the SD card is 4 GB.

Note: We recommend a minimum of 8 GB Class 10 SD Card. For small applications 4 GB might be enough.

To flash the image, you will need a special software. The recommended application is Etcher.

Note: For Linux users, you may use the dd utility.

2.2. Beaglebone Black 17

https://wyliodrin-studio.s3.us-east-2.amazonaws.com/wyliodrin_studio_beagleboneblack_2019_09_17.zip
https://debian.beagleboard.org/images/bone-debian-9.5-iot-armhf-2018-10-07-4gb.img.xz
https://www.balena.io/etcher/

Wyliodrin Studio Documentation, Release 2.2.3-beta

Install STUDIO Supervisor

To be able to access the Studio network, the BeagleBone Black needs to run the STUDIO Supervisor software. The
following tutorial will explain how to install it.

After writing the SD Card, insert it into the board and start the device. You will have to access it. This can be done
either by:

• connecting the BeagleBone Black to the network and use a SSH to connect to it

• connect a monitor and a keyboard to the board

If you are using SSH, you will have to input 192.168.7.2 as the host IP address and then login with the appropriate
credentials:

username: debian

password: temppwd

Stop additional services

The BeagleBone Black image has several servers started. These are used mainly for development. Run the commands
to stop them:

sudo systemctl disable bonescript.service
sudo systemctl disable bonescript-autorun.service
sudo systemctl disable bonescript.socket
sudo systemctl disable apache2
sudo systemctl disable cloud9.service
sudo systemctl disable cloud9.socket
sudo systemctl disable getty@tty1
sudo systemctl disable node-red.socket

Install Dependencies

The dependencies you will have to install are:

• supervisor: allows you to monitor processes related to a project

• redis: database management system

• build-essential: reference package for all the packages required for compilation

• git: required for the npm install command to download git included package

• python3-pip: python 3 programming language

sudo apt-get update
sudo apt-get install -y supervisor redis-server build-essential git python3-pip

To enable the Notebook tab, you should also run
sudo pip3 install redis pygments

18 Chapter 2. Boards Setup

Wyliodrin Studio Documentation, Release 2.2.3-beta

Install Node.js

The next step is to install NodeJS.

For BeagleBone Black, the ARMv7 version of Node.js is required, meaning that the bash commands are:

wget https://nodejs.org/dist/v10.16.3/node-v10.16.3-linux-armv7l.tar.xz

tar xvJf node-v10.16.3-linux-armv7l.tar.xz

After installing and unziping Node, you should reboot the board and restart the session and remove old node:

sudo rm /usr/bin/npm
sudo rm /usr/bin/npx
sudo rm -f /usr/lib/node_modules

Continue the configuration by running the following commands:

cd node-v10.16.3-linux-armv7l

sudo cp -R * /usr

sudo ln -s /usr/lib/node_modules /usr/lib/node

cd ..

rm -rf node-v10.16.3-linux-armv7l

Install studio-supervisor

In order to install studio-supervisor, the following commands are required:

sudo su -
npm install -g --unsafe-perm studio-supervisor

exit
sudo mkdir /wyliodrin

Write the supervisor script

Using nano editor, write the /etc/supervisor/conf.d/studiosupervisor.conf file with the following contents:

To start the editor, type

sudo nano /etc/supervisor/conf.d/studio-supervisor.conf

2.2. Beaglebone Black 19

https://nodejs.org/en/download/
https://nodejs.org/dist/v10.16.3/node-v10.16.3-linux-armv7l.tar.xz

Wyliodrin Studio Documentation, Release 2.2.3-beta

[program:studio-supervisor]
command=/usr/bin/studio-supervisor beaglebone
home=/wyliodrin
user=debian

Press Ctrl+X to save and exit the editor. Press Y when whether to save the file.

After that, you have to make the /wyliodrin directory your home directory:

sudo chown debian:debian /wyliodrin
cp /home/debian/.bashrc /wyliodrin/.bashrc

Note: While using the Pico-Pi device, you will need to run some commands as root, meaning that each time you will
use sudo, the system will ask you to input the passwork. In order to be able to run the sudo command without entering
a password, you will have to configure a setting.

You will have to run the sudo visudo command, which will open the etc/sudoers file. You will have to modify the
content by moving the next line at the end of the file:

debian ALL=(ALL) NOPASSWD: ALL

The final step is to refresh the board by running the command:

sudo supervisorctl reload

2.2.3 Connecting via web

The connection of a BeagelBone Black board to the web version of Wyliodrin STUDIO demands an Internet connec-
tion and the creation of a file, wyliodrin.json, that will be written and stored on the SD card. The purpose of this
configuration file is to keep a series of particular informations about the device and the platform, so the both instances
be able to recognize and communicate with each other.

Acquiring the wyliodrin.json file assumes that you will have to launch the web version of the application and to click
on the Connect button. After selecting the New Device option from the popup, a new dialog box will be opened and
will ask you for the name of your new device.

Once you start typing the name of your device, a JSON structure is automatically generated depending on the entered
data. The format of the object consists of the following properties:

Property title Description
token unique identifier for the device, automatically assigned by the program
id device name, updated as you change the name in the input box
server endpoint

The content of this JSON structure has to be copied into a file that you will name wyliodrin.json, as mentioned before.

20 Chapter 2. Boards Setup

Wyliodrin Studio Documentation, Release 2.2.3-beta

To add this file, you will have to connect the device to Wyliodrin STUDIO, open the Shell tab and run:

sudo nano /boot/wyliodrin.json

After creating the configuration file to the destination indicated, you can hit the Connect button of the web application.
At this point, you should see your BeagleBone Black device into the list of available devices and by clicking on its
name you will be able to connect it to the IDE.

2.3 Udoo Neo

This tutorial will show you how to set up a Udoo Neo device.

2.3.1 Set up the board manually

You can choose to configure the required image by yourself.

This will imply flashing an image with the OS (Ubuntu), installing the STUDIO Supervisor container and setting up
some configuration files.

2.3. Udoo Neo 21

Wyliodrin Studio Documentation, Release 2.2.3-beta

Download the Ubuntu image

You will need to:

1. Download a Ubuntu Image

2. Install the Studio Supervisor

3. Setup a provisioning file

Download the Ubuntu 16 image for Udoo Neo.

Flash the image

The downloaded image needs to be flash (written) to an SD card. The minimum size of the SD card is 4 GB.

Note: We recommend a minimum of 8 GB Class 10 SD Card. For small applications 4 GB might be enough.

To flash the image, you will need a special software. The recommended application is Etcher.

Note: For Linux users, you may use the dd utility.

Install STUDIO Supervisor

To be able to access the Studio network, the Udoo Neo needs to run the STUDIO Supervisor software. The following
tutorial will explain how to install it.

After writing the SD Card, insert it into the board and start the device. You will have to access it. This can be done
either by:

• connecting the Udoo Neo to the network and use a SSH to connect to it

• connect a monitor and a keyboard to the board

If you are using SSH, you will have to input 192.168.7.2 as the host IP address and then login with the appropriate
credentials:

username: udooer

password: udooer

Install Dependencies

The dependencies you will have to install are:

• supervisor: allows you to monitor processes related to a project

• redis: database management system

22 Chapter 2. Boards Setup

https://drive.google.com/file/d/1BkJCJrtGcZWHHQtXeOLIWPspK3jqwiBZ/view
https://www.balena.io/etcher/

Wyliodrin Studio Documentation, Release 2.2.3-beta

• build-essential: reference package for all the packages required for compilation

• git: required for the npm install command to download git included package

• python3-pip: python 3 programming language

sudo apt-get update
sudo apt-get install -y supervisor redis-server build-essential git python3-pip

To enable the Notebook tab, you should also run
sudo pip3 install redis pygments

Install Node.js

The next step is to install NodeJS.

For Udoo Neo, the ARMv7 version of Node.js is required, meaning that the bash commands are:

wget https://nodejs.org/dist/v10.16.3/node-v10.16.3-linux-armv7l.tar.xz

tar xvJf node-v10.16.3-linux-armv7l.tar.xz

After installing and unziping Node, you should reboot the board and restart the session and remove old node:

sudo rm /usr/bin/npm
sudo rm /usr/bin/npx
sudo rm /usr/lib/node_modules

Continue the configuration by running the following commands:

cd node-v10.16.3-linux-armv7l

sudo cp -R * /usr

sudo ln -s /usr/lib/node_modules /usr/lib/node

cd ..

rm -rf node-v10.16.3-linux-armv7l

Install studio-supervisor

In order to install studio-supervisor, the following commands are required:

sudo su -
npm install -g --unsafe-perm studio-supervisor

(continues on next page)

2.3. Udoo Neo 23

https://nodejs.org/en/download/
https://nodejs.org/dist/v10.16.3/node-v10.16.3-linux-armv7l.tar.xz

Wyliodrin Studio Documentation, Release 2.2.3-beta

(continued from previous page)

exit
sudo mkdir /wyliodrin

Write the supervisor script

Using nano editor, write the /etc/supervisor/conf.d/studiosupervisor.conf file with the following contents:

To start the editor, type

sudo nano /etc/supervisor/conf.d/studio-supervisor.conf

[program:studio-supervisor]
command=/usr/bin/studio-supervisor udooneo
home=/wyliodrin
user=udooer

Press Ctrl+X to save and exit the editor. Press Y when whether to save the file.

After that, you have to make the /wyliodrin directory your home directory:

sudo chown udooer:udooer /wyliodrin
cp /home/udooer/.bashrc /wyliodrin/.bashrc

The final step is to refresh the board by running the command:

sudo supervisorctl reload

2.3.2 Connecting via web

The connection of a Udoo Neo board to the web version of Wyliodrin STUDIO demands an Internet connection and
the creation of a file, wyliodrin.json, that will be written and stored on the SD card. The purpose of this configuration
file is to keep a series of particular informations about the device and the platform, so the both instances be able to
recognize and communicate with each other.

Acquiring the wyliodrin.json file assumes that you will have to launch the web version of the application and to click
on the Connect button. After selecting the New Device option from the popup, a new dialog box will be opened and
will ask you for the name of your new device.

Once you start typing the name of your device, a JSON structure is automatically generated depending on the entered
data. The format of the object consists of the following properties:

24 Chapter 2. Boards Setup

Wyliodrin Studio Documentation, Release 2.2.3-beta

Property title Description
token unique identifier for the device, automatically assigned by the program
id device name, updated as you change the name in the input box
server endpoint

The content of this JSON structure has to be copied into a file that you will name wyliodrin.json, as mentioned before.

To add this file, you will have to connect the device to Wyliodrin STUDIO, open the Shell tab and run:

sudo nano /boot/wyliodrin.json

After creating the configuration file to the destination indicated, you can hit the Connect button of the web application.
At this point, you should see your Udoo Neo device into the list of available devices and by clicking on its name you
will be able to connect it to the IDE.

2.4 Pico-Pi

This will show how to set up a Pico-Pi device.

To configure the Pico-Pi IMX8M board, it will be necessary to flash an image with the Ubuntu operating system,
install the Studio-Supervisor container and set up some configuration files.

2.4. Pico-Pi 25

Wyliodrin Studio Documentation, Release 2.2.3-beta

2.4.1 Download the pre-configured image

The easiest way to set up a Pico-Pi IMX8M board so that it becomes available for Wyliodrin STUDIO is to download
an image that is already configured.

Download the image for PicoPi IMX8M.

Once the image downloaded and unziped, the only thing that you have to do is to flash it. After that, your Pico-Pi
board should be visible within Wyliodrin STUDIO.

2.4.2 Set up the board manually

Enable the USB mass storage device

The first step is to connect the Pico-Pi device directly to your computer, using the micro USB and USB type C cables.

If your computer is running on Linux, you should be able to see the

If you are using Windows, you will need an additional driver to see the COM ports:

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

After downloading and extracting the files, you should open the Device Manager, right click on the Ports section and
select the driver. By the end, you should be able to see the following devices:

Export the EMMC device as mass storage to the host computer

1. Set up the serial terminal

As the Pico-Pi is already directly connected to your computer, you have to get a serial terminal program running. For
Linux, we suggest you to use screen, but any other serial terminal should work.

If you are using Windows, we recommend you to download and open Putty and customize the session with the
following options:

Connection type Serial
Serial line COM port for Pico-Pi, in this example COM9
Speed 115200

Once the session started, it will load U-boot and you will be able to see the text “Hit any key to stop autoboot:”.
Pressing on a key will stop the boot process and a open a boot prompt.

26 Chapter 2. Boards Setup

https://wyliodrinstudio.s3.eu-central-1.amazonaws.com/images/wyliodrin_studio_picopi_imx8m_2019_09_17.zip
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.putty.org/

Wyliodrin Studio Documentation, Release 2.2.3-beta

Note: If the boot prompt doesn’t appear, you should reboot the board by pressing the Restart button.

2. List the accessible devices

In order to get a list with the MMC devices, you should run the following command:

mmc list

The output should look like this:

3. Export the EMMC device

To export the Pico-Pi device to the host computer, you will run the next command:

ums 0 mmc 0

The output will be:

UMS: LUN 0, dev 1, hwpart 0, sector 0x0, count 0xe90000
/

A rotating cursor will be visible while the USB Mass Storage is running and the boot prompt can be exited by pressing
CTRL+C.

If you followed this steps, a new USB device should appear on your PC and you will use it to load the Ubuntu image.

Load the image into EMMC

Download the Ubuntu image from the TechNexion foundation. This is the standard OS for the Pico-Pi IMX8M
provided by the manufacturer.

Flash the Ubuntu image

The downloaded image needs to be flash (written) directly to the Pico Pi.

To flash the image, you will need a special software. The recommended application is Etcher.

Once the Ubuntu image flashed on your Pico-Pi board, you will have to reboot the device by pressing on its Restart
button and wait for it to boot the Ubuntu OS without pressing any key. When the boot process is finished, you will be
asked to provide the login credentials. For this type of device, the login username is ubuntu, same as the password,
ubuntu.

2.4. Pico-Pi 27

ftp://ftp.technexion.net/demo_software/pico-imx8mq/pico-imx8m_pico-pi-imx8m_ubuntu-18.04_QCA9377_hdmi_20181109.zip
https://www.balena.io/etcher/

Wyliodrin Studio Documentation, Release 2.2.3-beta

Install STUDIO Supervisor

To be able to access the Studio network, the Pico-Pi needs to run the STUDIO Supervisor software. The following
tutorial will explain how to install it.

After writing the image on the device, you will have to connect the Pico-Pi to the network and use a SSH to connect
to it.

Install Dependencies

The dependencies you will have to install are:

• supervisor: allows you to monitor processes related to a project

• redis: database management system

• build-essential: reference package for all the packages required for compilation

• git: required for the npm install command to download git included package

• python3-pip: python 3 programming language

sudo apt-get update
sudo apt-get install -y supervisor redis build-essential git python3-pip

To enable the Notebook tab, you should also run
sudo pip3 install redis pygments

Install Node.js

The next step is to install NodeJS.

For the Pico-Pi IMX8M you will need the ARMv8 version of Node.js, so you will run the following commands:

sudo apt-get install wget
wget https://nodejs.org/dist/v10.16.3/node-v10.16.3-linux-arm64.tar.xz

tar xvJf node-v10.16.3-linux-arm64.tar.xz

cd node-v10.16.3-linux-arm64

sudo cp -R * /usr

sudo ln -s /usr/lib/node_modules /usr/lib/node

cd ..

rm -rf node-v10.16.3-linux-arm64

28 Chapter 2. Boards Setup

https://nodejs.org/en/download/
https://nodejs.org/dist/v10.16.3/node-v10.16.3-linux-arm64.tar.xz

Wyliodrin Studio Documentation, Release 2.2.3-beta

Install studio-supervisor

In order to install studio-supervisor, the following commands are required:

sudo su -
npm install -g --unsafe-perm studio-supervisor

exit
sudo mkdir /wyliodrin

Write the supervisor script

Using nano editor, write the /etc/supervisor/conf.d/studiosupervisor.conf file with the following contents:

To start the editor, type

sudo apt-get install nano
sudo nano /etc/supervisor/conf.d/studio-supervisor.conf

[program:studio-supervisor]
command=/usr/bin/studio-supervisor picopi
home=/wyliodrin
user=ubuntu

Press Ctrl+X to save and exit the editor. Press Y when whether to save the file.

After that, you have to make the /wyliodrin directory your home directory:

sudo chown ubuntu:ubuntu /wyliodrin
cp /home/ubuntu/.bashrc /wyliodrin/.bashrc

Note: While using the Pico-Pi device, you will need to run some commands as root, meaning that each time you will
use sudo, the system will ask you to input the passwork. In order to be able to run the sudo command without entering
a password, you will have to configure a setting.

You will have to run the sudo visudo command, which will open the etc/sudoers file. You will have to modify the
content by moving the next line at the end of the file:

ubuntu ALL=(ALL) NOPASSWD: ALL

If you are using Wyliodrin STUDIO locally, you will need to install the following utilities:

sudo apt-get install avahi-daemon
sudo apt-get install openssh-server

The final step is to refresh the board by running the command:

2.4. Pico-Pi 29

Wyliodrin Studio Documentation, Release 2.2.3-beta

sudo supervisorctl reload

2.4.3 Connecting via web

The connection of a Pico-Pi IMX8M board to the web version of Wyliodrin STUDIO demands an Internet connection
and the creation of a file, wyliodrin.json, that will be written and stored on the device. The purpose of this configura-
tion file is to keep a series of particular informations about the device and the platform, so the both instances be able
to recognize and communicate with each other.

Acquiring the wyliodrin.json file assumes that you will have to launch the web version of the application and to click
on the Connect button. After selecting the New Device option from the popup, a new dialog box will be opened and
will ask you for the name of your new device.

Once you start typing the name of your device, a JSON structure is automatically generated depending on the entered
data. The format of the object consists of the following properties:

Property title Description
token unique identifier for the device, automatically assigned by the program
id device name, updated as you change the name in the input box
server endpoint

The content of this JSON structure has to be copied into a file that you will name wyliodrin.json, as mentioned before.
Once the file created and saved, it has to be stored on boot partition of your Pico-Pi.

To mount the boot partition, you will have to run the following command:

sudo nano /etc/fstab

You will have to add the following text content within the fstab file:

/dev/mmcblk0p1 /boot auto ro 0 0

After copying the configuration file to the destination indicated, you can reboot your board using the Restart button.
At this step, if you hit the Connect button of the web application, you should see your Pico-Pi device into the list of
available devices and by clicking on its name you will be able to connect it to the IDE.

2.5 Adafruit CLUE (CircuitPython)

Adafruit CLUE is a board similar to the Micro:Bit, but based on the Nordic nRF52840 SoC. It includes the following
sensors:

30 Chapter 2. Boards Setup

https://microbit.org

Wyliodrin Studio Documentation, Release 2.2.3-beta

• 9 axis inertial LSM6DS33 + LIS3MDL sensor

• humidity and temperature sensor

• barometric sensor

• microphone

• gesture, proximity, light color and light intensity sensor

It also has a 240x240 LCD display.

This documentation describes how to use the Adafruit CLUE with CircuitPython.

Adafruit CLUE can be used with both the offline and the web version (Google Chrome only) of WyliodrinSTUDIO.

2.5.1 Installing CircuitPython

You will have to follow these steps:

1. Download CircuitPython

2. Flash CircuitPython to the board

3. Load the libraries

2.5. Adafruit CLUE (CircuitPython) 31

https://learn.adafruit.com/adafruit-clue
https://circuitpython.org/

Wyliodrin Studio Documentation, Release 2.2.3-beta

Download CircuitPython

CircuitPython is an Adafruit modified version of MicroPython. Adafruit provides a downloadable image for several
boards. You have to download the Adafruit CLUE CircuitPython image.

Please download the latest stable version. This should be a UF2 file.

Flash the CircuitPython

The UF2 file that you have downloaded at the previous step has to be written to the board. Adafruit has provided a
very easy method to do that. Connect your board to your computer using a USB cable and double press the button on
tha back of the board (tha part that does not have a display). The Neopixel LED should start flashing green.

Double pressing the button on the back will put the board into DFU mode. This will display connect to your computer
a USB drive called BOOT. Copy and paste the downloaded UF2 file to this drive. This will flash CircuitPython to the
board.

2.5.2 Offline WyliodrinSTUDIO

Connect the board to your computer using the USB cable. Run Wyliodrin STUDIO and open the Connect menu. You
should have an option called Adafruit Industries or Adafruit CLUE. Select that board. A popup with some options will
appear, just use the default options and click Connect.

You should be connected to the board.

2.5.3 Web WyliodrinSTUDIO

Note: Using the web version requires Google Chrome with some epxerimental features enabled

To use the Adafruit CLUE in the web version, you will have to use Google Chrome and enable Experimental Features.

To enable Experimental Features in Google Chrome, follow the steps:

1. In the Chrome search bar write chrome: // flags

2. Search the search bar for the flags: #enable-experimental-web-platform-features

3. Set the ENABLE flag for Experimental Web Platform features

4. At the bottom right click RELAUNCH button

5. Restart the browser

After enabeling Experimental Features, connect the board to your computer using the USB cable and click the Connect
menu. Select the MicroPython option. A popup will appear, you can safly use the default settings and click Connect.
The browser will ask you to select the serial port. Select the port that has the Adafruit word in its name.

You should be connected to the board.

2.6 ESP 8266 (MicroPython)

This will show how to set up a ESP8266 device.

32 Chapter 2. Boards Setup

https://circuitpython.org/board/clue_nrf52840_express

Wyliodrin Studio Documentation, Release 2.2.3-beta

2.6.1 Windows

1. Download Micropython firmware

Open a browser and type this link: https://micropython.org/download/esp8266/, then go install the latest version (with-
out opening it).

Suggestion: create a folder on your computer named “esp8266” or “micropython” and download it there.

2.6. ESP 8266 (MicroPython) 33

https://micropython.org/download/esp8266/

Wyliodrin Studio Documentation, Release 2.2.3-beta

2. Install NodeMCU PyFlasher and flashing Micropython on ESP8266

NodeMCU PyFlasher is a new GUI tool to flash NodeMCU based on esptool.py and wxPython. It is available for
Windows and for macOS. First, you have to connect the ESP8266 to your computer. Take the USB cable from the kit
and Put the USB-C in one of your ports and then connect the micro-USB to the microcontroller.

Check this link install NodeMCU, scroll down to the executables. If you have Windows 10 choose the first one
(NodeMCU-PyFlasher-4.0-x64.exe), if you have Windows 7 choose the second one (NodeMCU-PyFlasher-4.0-
x86.exe).

After the installation will be completed, click on the NodeMCU PyFlasher .exe file and you should have a similar
window:

34 Chapter 2. Boards Setup

https://github.com/marcelstoer/nodemcu-pyflasher/releases

Wyliodrin Studio Documentation, Release 2.2.3-beta

First, you have to choose your serial port, in this case it is “COM4”, (the number after “COM” is based on the port
that you chose) like in the image below.

If you want to check which port you chose go in the Open Start menu and type “Device Manager”, then check Ports
section (the number after “COM” is based on the port that you chose).

Succeeding, you have to click on “Browse” and go to the folder where you installed Micropython and choose the .bin
file. Next you should chose the “Baud rate” like in the image below:

2.6. ESP 8266 (MicroPython) 35

Wyliodrin Studio Documentation, Release 2.2.3-beta

If you encounter errors, you need to reduce the baud rate (for example 9600 or up down). “1115200” is the speed read
by serial port

As final step, you have to click on the button “Flash NodeMCU”.

Congratulations, now you have Micropython on your ESP8266!

2.6.2 Linux

2.1 Install Python

First, you should check if you have python3 installed. For that open Terminal and type:

$ python3 –version

36 Chapter 2. Boards Setup

Wyliodrin Studio Documentation, Release 2.2.3-beta

If the python version appears, you can skip the installation go to Verify PIP is installed. You might have a newer
version of python

If you do not have python installed, you have to use this command:

$ sudo apt install python3

At the moment, you should have python3. In order to check if the installation is completed, type:

$ python3

Then try to code in python, like in the image below:

To exit python press Ctrl+Z.

Verify PIP is installed

Open Terminal and type :

$ pip3

If it is installed you should have a similar output :

But if it has not been installed, you have to use the commands:

$ sudo apt-get update

$ sudo apt-get install python-pip

$ sudo pip install –upgrade pip

Congratulations, now you have installed Python!

2.6. ESP 8266 (MicroPython) 37

Wyliodrin Studio Documentation, Release 2.2.3-beta

2.2 Download Micropython firmware

Open a browser and type this link: https://micropython.org/download/esp8266/, then go install the latest version (with-
out opening it).

Suggestion: create a folder on your computer named “esp8266” or “micropython” and download it there.

3. Flashing Micropython on ESP8266

Open Terminal and use the command:

$ pip3 install esptool

Then check the esptool installation by typing:

$ esptool

Connect the ESP8266 to your computer. Take the USB cable from the kit and Put the USB-C in one of your ports and
then connect the micro-USB to the microcontroller.

Succeeding, go to the folder where you installed Micropython firmware. Use $ls command to list files and directories
and $ cd to change the current working directory.

Type $ dmesg to see the port, you should have a similar output:

38 Chapter 2. Boards Setup

https://micropython.org/download/esp8266/

Wyliodrin Studio Documentation, Release 2.2.3-beta

In this case the port is ttyUSB0.

After, use the command:

$ esptool.py –port /dev/ttyUSB0 erase_flash

for erasing the flash memory on the board. Instead of ttyUSB0 you might have another port. You have to put the one
that you have seen earlier.

Press the reset (RST) button from your ESP8266, then use the command:

$ esptool.py –port /dev/ttyUSB0 –baud 460800 write_flash –flash_size=detect 0 esp8266-20170108-
v1.8.7.bin

Keep in mind to put the port that you used in the previous command and pay attention to the version of Micropython
that you have installed. Instead of “esp8266-20170108-v1.8.7.bin” you might have another version. You must replace
it in the command. If you encounter errors, you need to reduce the baud rate (for example 115200 or up down).

Next, connect to the serial console with command:

$ screen /dev/ttyUSB0 115200

“115200” is the speed read by serial port. To close it type Ctrl+D or Ctrl+a followed by Ctrl+\.

Congratulations, now you have Micropython on your ESP8266!

2.6.3 macOS

2.6. ESP 8266 (MicroPython) 39

Wyliodrin Studio Documentation, Release 2.2.3-beta

1. Download Micropython firmware

Open a browser and type this link: https://micropython.org/download/esp8266/, then go install the latest version (with-
out opening it).

Suggestion: create a folder on your computer named “esp8266” or “micropython” and download it there.

2. Install NodeMCU PyFlasher and flashing Micropython on ESP8266

NodeMCU PyFlasher is a new GUI tool to flash NodeMCU based on esptool.py and wxPython.

First, you have to connect the ESP8266 to your computer. Take the USB cable from the kit and Put the USB-C in one
of your ports and then connect the micro-USB to the microcontroller.

Check this link install NodeMCU, if you have High Sierra. Scroll down to the executables and click on the third
executable (NodeMCU-PyFlasher-4.0.dmg).

After the installation will be completed, click on the NodeMCU PyFlasher .exe file and you should have a similar
window:

40 Chapter 2. Boards Setup

https://micropython.org/download/esp8266/
https://github.com/marcelstoer/nodemcu-pyflasher/releases

Wyliodrin Studio Documentation, Release 2.2.3-beta

First, you have to choose your serial port, in this case the port is: “/dev/cu.SLAB_USBtoUART”

Succeeding, you have to click on “Browse” and go to the folder where you installed Micropython and choose the .bin
file. Next you should choose the Baud rate like in the image above

If you encounter errors, you need to reduce the baud rate (for example 1115200 or up down). “921600” is the speed
read by serial port.

As final step, you have to click on the button “Flash NodeMCU”.

Congratulations, now you have Micropython on your ESP8266!

2.6. ESP 8266 (MicroPython) 41

Wyliodrin Studio Documentation, Release 2.2.3-beta

42 Chapter 2. Boards Setup

CHAPTER 3

General Architecture of Wyliodrin STUDIO

Wyliodrin STUDIO consists of a series of plugins that we used to build the different parts of our application.

Basically, a plugin is a component of the program that will help you apply different features. Due to the fact that
Wyliodrin Studio supports plugins, it enables customization, which means that you will be able contribute to the
development and improvement of our application.

To design the user interface we chose the Vue framework and for data synchronization we used VueX library, which
is deeply integrated into Vue and exploits its reactivity.

3.1 Plugin architecture

Each plugin is a folder in the source/plugins.

In order to create your own plugin, you should open the folder that you cloned before with a source-code editor, like
Visual Studio Code. After that, you will have to open the plugins folder, that represents the “storage center” for all
the plugins and that is found inside the source folder. Here, in plugins, you will create a new folder, named after the
plugin you’d like to add.

43

https://vuejs.org/v2/guide
https://vuex.vuejs.org/

Wyliodrin Studio Documentation, Release 2.2.3-beta

We recommand for the plugin name to be lowercase, and the words separated by “.” For example, we’ll create the
my.new.plugin folder.

The main components that you’ll need to create for your plugin are:

• The data folder: contains a sub-directory, img, which can also include different folders that you’ll need in order
to keep the images that you use inside your .vue files.

• The style folder: contains the .less files, where we apply the CSS design for the different vue-components.

• The translations folder: consists of the messages-ln.json files(ln=language abbreviation). More details regard-
ing this subject can be found here.

• The views folder, optional, recommended only if you will create .vue files to design the user interface for your
plugin. (For example, it can contain the file MyVueFile.vue)

• The package.json file, which contains an object with the primary details regarding your plugin:

Property title Description Required / Op-
tional

Default
value

name the name of the plugin (“button.example”) required -
version 0.0.1 required “0.0.1”
main the main file of the plugin, that will be “index.js” required “index.js”
plugin an object where we specify the characteristics of the plugin required -

44 Chapter 3. General Architecture of Wyliodrin STUDIO

Wyliodrin Studio Documentation, Release 2.2.3-beta

The properties of the “plugin” component are:

Property title Description Required / Op-
tional

Default
value

consumes we specify from which other plugins our plugin uses exported
functions (required “workspace”)

required [“workspace”]

provides we specify if our plugin functions will be exported (“exam-
ple_button”)

optional []

target for which version of the program the plugin should be working:
browser or electron

required -

As an example, a package.json file should look like this:

{
"name": "my.new.plugin",
"version": "0.0.1",
"main": "index.js",
"private": false,
"plugin": {

"consumes": ["workspace"],
"provides": ["my_new_plugin"],
"target": ["browser", "electron"]

}
}

• The index.js file, which will be your main file.

Here, you can import all the .vue files that you need to register.

For example, if you previously create some Vue components to design the user interface, the first line in your index.js
could look like that:

import MyVueFile from './views/MyVueFile.vue';

After that, you’ll need to instantiate an object that can be empty, or that can contain different functions that you’ll use.

The most important component of this file is the setup function that has to be exported, its purpose being to register
your plugin and to make it functional inside the application.

export function setup(options, imports, register)
{

/* Collect the functions exported by the consumed plugins */
studio = imports;

/* Here goes your code */

register(null, {});

}

At the end, the folder should look like this:

3.1. Plugin architecture 45

Wyliodrin Studio Documentation, Release 2.2.3-beta

3.2 Dependencies

We are using the webpack module to process the Wyliodrin STUDIO application. If you’re not familiarized with
webpack, you should consult the theory presented in their documentation, in order to understand which are the core
concepts and how the modules that we use are mapped into the “dependency graph”.

As you probably read before, there are 2 different options to build the code, depending on the version that you are
using:

• Standalone

npx webpack

• Browser

npx webpack --config=webpack.browser.config.js

Once the code was built, a folder named “build” is created. Its content represents the distribution code, which means a
“minimized and optimized output of our build process that will eventually be loaded”. More details can also be found
here.

To pack (or “bundle”) a dependency, we need to install the module locally. These dependencies are copied in the build
folder, but they are not available yet for the browser version of Wyliodrin STUDIO.

46 Chapter 3. General Architecture of Wyliodrin STUDIO

https://webpack.js.org/concepts/
https://webpack.js.org/guides/getting-started/

Wyliodrin Studio Documentation, Release 2.2.3-beta

npm install archiver --save

We also created the devDependencies option, which allow to some particular dependencies to work not only for
the electron edition, but also for the browser one. They are saved in the main package.json file of the program, as
devDependencies property, and they are installed using the command:

npm install highcharts --save-dev

3.2.1 Imports

Each plugin exports in its main file “index.js” a setup function, designed to register the plugin. The structure of this
function is:

export function setup(options, imports, register)
{

/* the function code */
}

As you can see, one of the parameters of this function is imports.

The imports object has as purpose to collect all the functions and dependencies from the other plugins that our plugin
consumes.

For example, let’s suppose that you have a plugin called “test.plugin”, which depends on the “workspace” and
“projects” plugins. This means that the content of its package.json file will be:

{
"name": "test.plugin",
"version": "0.0.1",
"main": "index.js",
"private": false,
"plugin": {

"consumes": ["workspace", "projects"],
"provides": [],
"target": ["electron", "browser"]

}
}

The fact that your plugin consumes these 2 plugins means that the imports object will include all their modules and
will allow you to access all their functions. Therefore, your setup function from the “index.js” file could look like this:

let studio = null;

export function setup (options, imports, register)
{

studio = imports;

(continues on next page)

3.2. Dependencies 47

Wyliodrin Studio Documentation, Release 2.2.3-beta

(continued from previous page)

/* use the registerTab function from the workspace plugin */
studio.workspace.registerTab('TEST_TAB', 100, TestTab, {

visible ()
{

/* use the getCurrentProject function from the projects
→˓plugin to make

the tab visible only if there is a project opened */

return !!studio.projects.getCurrentProject();
}

});
}

3.2.2 Provides

As it was specified in this section, “provides” is a property assigned to the “plugin” property in the package.json file
of each plugin. The idea around this property is to indicate if a plugin will export its own functions and modules to be
used by other plugins.

For example, let’s assume that you have the same plugin, “test.plugin”, which doesn’t provide anything. This means
that all its functions will be private and no other plugin will pe able to use them, not even if it specifies that it
“consumes” your plugin.

In this case, the package.json file of your plugin will look like this:

{
"name": "test.plugin",
"version": "0.0.1",
"main": "index.js",
"private": true,
"plugin": {

"consumes": [],
"provides": [],
"target": ["electron", "browser"]

}
}

And the index.js file will look like this:

export function setup (options, imports, register)
{

studio = imports;

/*Here goes your code*/
register (null, {});

}

But if you want for your plugin to provide all its functions so that the others plugins may access and use them, you
have to indicate this option inside the “provides” property. You should be careful at the fact that the provided object
should not contain and “.” in its name, unlike the plugin name.

Therefore, the content of the package.json should be:

48 Chapter 3. General Architecture of Wyliodrin STUDIO

Wyliodrin Studio Documentation, Release 2.2.3-beta

{
"name": "test.plugin",
"version": "0.0.1",
"main": "index.js",
"private": true,
"plugin": {

"consumes": [],
"provides": ["test_plugin"],
"target": ["electron", "browser"]

}
}

As you can see, your “test.plugin” provides the “test_plugin” object, which means that if another plugin it’s using its
functions, it should consume the same “test_plugin” object.

In this situation, the index.js file will have the following structure:

export function setup (options, imports, register)
{

studio = imports;

/* Here goes your code*/

register (null, {
test_plugin: test_plugin

});
}

3.3 Architecture Components

3.3.1 Toolbar Buttons

The toolbar is a component located at the top of the window, on which you can add multiple elements.

The toolbar buttons are created using the registerToolbarButton function. One of the functionalities added in the
toolbar using this function is the Projects Library, which opens a dialog where the user can manage his applications.

3.3. Architecture Components 49

Wyliodrin Studio Documentation, Release 2.2.3-beta

You can learn more about this component here.

3.3.2 Tabs

The tabs are the main components of the workspace, created using the registerTab function. They offer the possibility
to write and test the code for programming an IoT device, display sensors data, import Frietzing schematics or access
the connected device directly through the shell.

The existing tabs at the moment are: Application, Dashboard, Notebook, Schematics, Pin Layout and Shell.

You can find more details about the tabs in this section.

3.3.3 Menu

The Menu is an element created on the toolbar component, represented by the following icon:

When clicked, it opens a menu containing different elements that help the user learn more about Wyliodrin STUDIO,
send his feedback or switch to the advanced mode.

The components of the menu are:

A better presentation of the menu component and the menu items can be found in this section.

50 Chapter 3. General Architecture of Wyliodrin STUDIO

Wyliodrin Studio Documentation, Release 2.2.3-beta

3.3.4 Connection Button

In the workspace plugin we added the connection button, which was designed inside the DeviceTools.vue component.
It is visible only when there is no device connected to Wyliodrin Studio.

On click, it calls the showConnectionSelectionDialog and it opens a dialog where the user can see all the available
devices. By clicking on a device, he will be asked to input the technical specifications and the login credentials, in
order to connect and enable the device functionalities. When the connection was successfully completed, the device
status will change from DISCONNECTED to CONNECTED.

3.3.5 DeviceTool Buttons

These buttons are visible only when a device is connected, because they will replace the Connection Button, and they
can be different according to the device type.

We added them in the DeviceTools.vue component, and this is how they look like:

A better description of this component can be found here.

3.3.6 Status Buttons

The Status Buttons are created with the registerStatusButton function. They are used to open the console or the mqtt
server.

The Console button opens a console similar to the shell.

The MQTT button opens an interface where you can choose the port where the MQTT server will be opened (publish-
subscribe-based messaging protocol).

You can learn more about the status buttons here.

3.3. Architecture Components 51

Wyliodrin Studio Documentation, Release 2.2.3-beta

52 Chapter 3. General Architecture of Wyliodrin STUDIO

CHAPTER 4

Extension methods

Wyliodrin STUDIO enables customization, which means that you may add plugins to extend its features. Plugins may
register different components, like buttons specifically designed for devices, workspace tabs, status buttons, toolbar
buttons or menus.

Here is a list of plugins of this type, registered at this moment in Wyliodrin STUDIO:

4.1 Menu

The menu button is included in the Menu.vue component, as a simple image button.

If clicked, it opens a help menu including some topics registered using the registerMenuItem function.

registerMenuItem(name, priority, action, options)
This function will register a new item in the menu that is displayed in the top left corner of the window. A menu
item is a component that will allow the “analysis” of Wyliodrin STUDIO, the purpose of the menu being to
include details about the application and its operation.

Each item has a name, that will be displayed in the menu, a priority, which refers to the position of an element
in the list of menu items, an action, representing the content that will be opened when the item is selected, and
aditional options, that will authorize or will block the user access, depending on their value.

The default value of these options is () => return true, which means the menu item will be visible and will
allow user access, but it can be customized at the moment of the registration of one element.

If the value of enabled will be changed to another function, the name of the menu item will still be visible in
the list of all menu items, but it won’t permit any user action, because the item will not become usable until the
return value of the function will be true.

53

Wyliodrin Studio Documentation, Release 2.2.3-beta

If the value of the visible option is changed to another function, the name of the menu item will not appear in the
list with all menu items until the return value of the function will become true; in this case, when the element is
visible, it becomes automatically enabled.

Arguments

• name (string) – the name/id of the menu item

• priority (number) – the priority of the tab, lower is to the left

• action (function) – the function to run when clicked

• options (Object) – additional options, like visible or enabled; the tab is available for
user interaction according to the value of these options

Returns disposable – - an item that may be disposed

Examples:

registerMenuItem('WYLIODRIN_API', 10, () => documentation.openDocumentation());

The items currently registered in the menu are:

Wyliodrin API: opens a new window with the API documentation

Resistor color code: dialog with the color code of a resistor

Send feedback: dialog where you can write a feedback, having a printscreen attached

Use Advanced/Simple Mode: switch between the simple and advanced (more functionalities included) mode.

About: dialog with a short description of the application

54 Chapter 4. Extension methods

Wyliodrin Studio Documentation, Release 2.2.3-beta

4.2 Toolbar Buttons

These buttons are located in the toolbar, on the top of the main window. A toolbar button is an element that will
perform different actions when clicked, according to the component that is relied to it. For example, these buttons may
open dialogs that require user inputs.

In order to create this type of buttons, we implemented the registerToolbarButton function:

registerToolbarButton(name, priority, action, iconURL, options)
This function will register a new button in the toolbar.

Each toolbar button has a translatable name, that will be displayed under it on mouse hover, a priority, which
refers to the position of an element in the toolbar buttons list, an action, representing the content that will be
opened when the button is selected, an icon that will represent the actual symbol of the button and on which the
user will be able to click, and aditional options, that will authorize or will block the user access, depending on
their value.

The default value of these options is () => return true, which means the toolbar button will be visible and will
allow user access, but it can be customized at the moment of the registration of one element.

If the value of enabled will be changed to another function, the name of the toolbar button will still be visible
in the list of all toolbar buttons, but it won’t permit any user action, because the button will not become usable
until the return value of the function will be true.

If the value of the visible option is changed to another function, the name of the toolbar button will not appear
in the list with all toolbar buttons until the return value of the function will become true; in this case, when the
element is visible, it becomes automatically enabled.

Arguments

• name (string) – the name/id of the toolbar button

• priority (number) – the priority of the tab, lower is to the left

• action (function) – the function to run when clicked

• iconURL (string) – the relative path to the image assigned

• options (Object) – additional options, like visible or enabled; the button is available
for user interaction according to the value of these options

Returns disposable – - an item that may be disposed

Examples:

let time = new Date();

registerToolbarButton('TOOLBAR_BUTTON', 10, () => showNotification('You created a
→˓toolbar button!'), 'plugins/projects/projects/data/img/icons/button.svg', {

visible() {
return time.getHours() > 8;

}
});

we register a button having the translation key ‘TOOLBAR_BUTTON’, the priority 10, that on click will pop up a
notification with the content: “You created a toolbar button”. We need to specify the relative path to the image related
to the button.

This function also modifies the default value of the visible additional options, making the button visible for the user
only after 8 AM.

4.2. Toolbar Buttons 55

Wyliodrin Studio Documentation, Release 2.2.3-beta

4.3 Tabs

The tabs are components of our application and accomplish various functions that help you handling your projects and
interacting with the device that is connected to Wyliodrin STUDIO.

They are integrated with the registerTab function:

registerTab(name, priority, component, options)
This function will register a new tab in the workspace.

Each tab has a title, that will be displayed in the workspace, a priority, which refers to the position of a tab in
the list of tabs, a component, representing the actual content and funtionality of the tab, and aditional options,
that will authorize or will block the user access, depending on their value.

The default value of these options is () => return true, which means the menu item will be visible and will
allow user access, but it can be customized at the moment of the registration of one element.

If the value of enabled will be changed to another function, the name of the menu item will still be visible in
the list of all menu items, but it won’t permit any user action, because the item will not become usable until the
return value of the function will be true.

If the value of the visible option is changed to another function, the name of the menu item will not appear in the
list with all menu items until the return value of the function will become true; in this case, when the element is
visible, it becomes automatically enabled.

Arguments

• name (string) – the translation ID of the title of the tab

• priority (number) – the priority of the tab, lower is to the left

• component (Vue) – the Vue component to display

• options (options) – additional options, like visible or enabled; the tab is available for
user interaction according to the value of these options;

Returns disposable – an item that may be disposed {disposable()}

Examples:

let time = new Date();

registerTab('PROJECT_NOTEBOOK', 300, Notebook, {
enabled () {

return time.getHours() > 8;
}

});

A list of the currently existing tabs:

56 Chapter 4. Extension methods

Wyliodrin Studio Documentation, Release 2.2.3-beta

The tabs are registered in the workspace plugin. They can be accessed only if their “enabled” property is true, which
means that you have to validate a certain condition: have an opened project or be connected to a device.

4.4 DeviceTool Buttons

These buttons are visible only when a device is connected and they can be different according to the device type.

We added them in the DeviceTools.vue component, and this is how they look like:

They were previously registered using the registerDeviceToolButton function:

registerDeviceToolButton(deviceType, name, priority, action, iconURL, options)
This function is used to register a new device tool button, specific for every device type.

For example, when a Raspberry Pi board is connected, the following buttons become available: Run, Stop,
TaskManager, PackageManager, NetworkManager.

Each device button require a deviceType, to know for which type of device we are registering the customized
button, it has a translatable name, that will be displayed under it on mouse hover, a priority, which refers to the
position of an element in the device buttons list, an action, representing the content that will be opened when
the button is selected, an icon that will be the actual symbol of the button and on which the user will be able to
click, and aditional options, that will authorize or will block the user access, depending on their value.

The default value of these options is () => return true, which means the device button will be visible and will
allow user access, but it can be customized at the moment of the registration of one element.

If the value of enabled will be changed to another function, the name of the device button will still be visible in
the list of all device buttons, but it won’t permit any user action, because the button will not become usable until
the return value of the function will be true.

If the value of the visible option is changed to another function, the name of the device button will not appear
in the list with all device buttons until the return value of the function will become true; in this case, when the
element is visible, it becomes automatically enabled.

Arguments

• deviceType (string) – the device driver type the button is for

• name (string) – the name/id of the menu item

• priority (number) – the priority of the tab, lower is to the left

4.4. DeviceTool Buttons 57

Wyliodrin Studio Documentation, Release 2.2.3-beta

• action (function) – the function to run when clicked

• iconURL (string) – the relative path to the image assigned

• options (Object) – additional options, like visible or enabled; the button is available
for user interaction according to the value of these options

Returns disposable – - an item that may be disposed

Examples:

let time = new Date();

registerDeviceToolBotton('RUN', 10, => showNotification('You clicked the Run
→˓button!'),

'plugins/studio/workspace/data/img/icons/button.svg', {
visible() {

return time.getHours() > 8;
}

});

Here, we registered a device tool button having the translation key ‘DEVICETOOL_BUTTON’, the priority 10, that
on click will pop up a notification with the content: “You created a device tool button!”.

The button will be visible for an user only after 8 AM.

4.5 Status Buttons

The last component of the workspace is represented by the status buttons: Console and MQTT. A status button is an
element that will perform different actions when clicked, according to the component that is relied to it. For example,
these buttons may open terminals or interfaces that require user inputs.

They are created using the registerStatusButton function.

registerStatusButton(name, priority, component, iconURL, options)
This function will register a new button in the status bar that is displayed in the bottom of the window.

Each status button has a translatable name, that will be displayed under it on mouse hover, a priority, which
refers to the position of an element in the status buttons list, a component, representing the content that will be
shown when the button is clicked, an icon that will represent the actual symbol of the button and on which the
user will be able to click, and aditional options, that will authorize or will block the user access, depending on
their value.

The default value of these options is () => return true, which means the status button will be visible and will
allow user access, but it can be customized at the moment of the registration of one element.

If the value of enabled will be changed to another function, the name of the status button will still be visible in
the list of all status buttons, but it won’t permit any user action, because the button will not become usable until
the return value of the function will be true.

58 Chapter 4. Extension methods

Wyliodrin Studio Documentation, Release 2.2.3-beta

If the value of the visible option is changed to another function, the name of the status button will not appear
in the list with all status buttons until the return value of the function will become true; in this case, when the
element is visible, it becomes automatically enabled.

The statusButtons registered at the moment can open the Console and the Mqtt server interface.

Arguments

• name (string) – the name/id of the menu item

• priority (number) – the priority of the tab, lower is to the left

• component (Vue) – the Vue component to display

• iconURL (string) – the relative path to the image assigned

• options (Object) – additional options, like visible or enabled; the button is available
for user interaction according to the value of these options

Returns disposable – - an item that may be disposed

Examples:

registerStatusButton('CONSOLE', 1, Console, 'plugins/studio/console/data/img/
→˓icons/terminal-icon.svg');

The Console button opens a console similar to the shell, while the MQTT button opens an interface where you can
choose the port where the MQTT server will be opened (the default port is 1883). MQTT is a publish-subscribe-based
messaging protocol.

4.6 Language

The language button is included in the LanguageMenu.vue component and its corresponding image, a flag, changes
dynamically according to the selected language.

Here’s a list with all the languages available at this moment:

4.6. Language 59

Wyliodrin Studio Documentation, Release 2.2.3-beta

When a language is selected from the list, the setLanguage function is called, which is using the internationalization
(i18n) process, and the new language is updated, meaning that all the keys will be translated. More details about the
translation function are discussed here.

60 Chapter 4. Extension methods

https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Internationalization_and_localization

CHAPTER 5

Deploy Application

Broadly speaking, software deployment consists of all the porcesses required for preparing the a software application
to run and operate in a specific environment. It involves installation, configuration, testing and making changes to
optimize the performance of the software. In Wyliodrin Studio, deploying an application basically means to put it
into production, after its prototype is finished and tested.

For the moment Wyliodrin Studio provides support just for Docker. The application will be deployed in a container,
which is a standard unit of software that packages up code and all its dependencies so the application runs quickly and
reliably. In this way the app will be able to start automatically and run in the background.

This feature contains two main parts.

5.1 Deploy an Application

5.1.1 Start a deployment

To deploy a project you have to use the Deploy button.

61

Wyliodrin Studio Documentation, Release 2.2.3-beta

After pressing it, the Dockerfile pop-up will appear.

This means that you do not have any dockerfile in the folder of your project. You now have the posibility to create a
dockerfile through Wyliodrin Studio, or to make one of your own.

5.1.2 Setup the deployment

You will be able to customize your dockerfile in the Deployment Settings pop-up.

62 Chapter 5. Deploy Application

Wyliodrin Studio Documentation, Release 2.2.3-beta

In this dialog, you have multiple options to customize you dockerfile. The process options are:

Interactive the container is running in the foreground and has the console attached
Service the container is running in detached mode

The restart options are:

Do not restart do not automatically restart the container when it exits
Always restart the container always, regardless of the exit status
On failure restart the container only when it exits with a non-zero status
Unless
stopped

always restart the container, except if it was put into stopped state before the Docker daemon was
stopped.

The network options are:

Private use docker’s default networking setup
Same as device use the host’s network stack inside the container

Other options are:

5.1. Deploy an Application 63

Wyliodrin Studio Documentation, Release 2.2.3-beta

Remove container at exit automatically clean up the container and remove the file system when the container
exits

Priviledged container give extended privileges and acces to all devices to the container

As you can see, there are already some default options set. However, you can always change them or add other options
that you need in the Additional Options field.

By doing these actions, you succesfully deployed your project in a container. This container has the same name as
your project and can be found in the Deployments pop-up.

5.2 Manage Deployments

Wyliodrin STUDIO allows you to manage your deployed apps. By pressing the Deployments button you can manage
both your containers created in Wyliodrin Studio, and the ones created locally on your machine.

After pressing this button you will be shown a list of all the containers.

64 Chapter 5. Deploy Application

Wyliodrin Studio Documentation, Release 2.2.3-beta

In the list you will find two types of containers. The ones with the Wyliodrin Studio logo are the one created inside
the application, whilst the ones with the docker icon are created locally. You may also see in which state the container
can be found in that particular moment, as well as delete or stop the containers.

5.2. Manage Deployments 65

Wyliodrin Studio Documentation, Release 2.2.3-beta

66 Chapter 5. Deploy Application

CHAPTER 6

Wyliodrin Studio API

6.1 Workspace plugin API

“Workspace” is the main plugin in our application. It exports the “workspace” object, containing a series of functions
that we use in every other plugin.

6.1.1 Data Types

class Device()
Device Identification

Arguments

• id (String) – unique id for the device (determined by the driver)

• name (String) – name of the device

• type (String) – type of the device (the device type id that reported the device)

disposable()
a function that is called when the item may be deleted

67

Wyliodrin Studio Documentation, Release 2.2.3-beta

6.1.2 Tabs

registerTab(name, priority, component, options)
This function will register a new tab in the workspace.

Each tab has a title, that will be displayed in the workspace, a priority, which refers to the position of a tab in
the list of tabs, a component, representing the actual content and funtionality of the tab, and aditional options,
that will authorize or will block the user access, depending on their value.

The default value of these options is () => return true, which means the menu item will be visible and will
allow user access, but it can be customized at the moment of the registration of one element.

If the value of enabled will be changed to another function, the name of the menu item will still be visible in
the list of all menu items, but it won’t permit any user action, because the item will not become usable until the
return value of the function will be true.

If the value of the visible option is changed to another function, the name of the menu item will not appear in the
list with all menu items until the return value of the function will become true; in this case, when the element is
visible, it becomes automatically enabled.

Arguments

• name (string) – the translation ID of the title of the tab

• priority (number) – the priority of the tab, lower is to the left

• component (Vue) – the Vue component to display

• options (options) – additional options, like visible or enabled; the tab is available for
user interaction according to the value of these options;

Returns disposable – an item that may be disposed {disposable()}

Examples:

let time = new Date();

registerTab('PROJECT_NOTEBOOK', 300, Notebook, {
enabled () {

return time.getHours() > 8;
}

});

In this example, the Notebook tab will be enabled and will allow user access only after 8AM. Until then, it will appear
in the list of tabs as it follows:

68 Chapter 6. Wyliodrin Studio API

Wyliodrin Studio Documentation, Release 2.2.3-beta

registerMenuItem(name, priority, action, options)
This function will register a new item in the menu that is displayed in the top left corner of the window. A menu
item is a component that will allow the “analysis” of Wyliodrin STUDIO, the purpose of the menu being to
include details about the application and its operation.

Each item has a name, that will be displayed in the menu, a priority, which refers to the position of an element
in the list of menu items, an action, representing the content that will be opened when the item is selected, and
aditional options, that will authorize or will block the user access, depending on their value.

The default value of these options is () => return true, which means the menu item will be visible and will
allow user access, but it can be customized at the moment of the registration of one element.

If the value of enabled will be changed to another function, the name of the menu item will still be visible in
the list of all menu items, but it won’t permit any user action, because the item will not become usable until the
return value of the function will be true.

If the value of the visible option is changed to another function, the name of the menu item will not appear in the
list with all menu items until the return value of the function will become true; in this case, when the element is
visible, it becomes automatically enabled.

Arguments

• name (string) – the name/id of the menu item

• priority (number) – the priority of the tab, lower is to the left

• action (function) – the function to run when clicked

• options (Object) – additional options, like visible or enabled; the tab is available for
user interaction according to the value of these options

Returns disposable – - an item that may be disposed

Examples:

registerMenuItem('WYLIODRIN_API', 10, () => documentation.openDocumentation());

In this example, the Wyliodrin API menu element will open a new documentation window when clicked.

renameMenuItem(prevName, actualName)
Rename an item from the menu.

The previous parameters that were set for the current menu item will remain unchanged, but the name of the
element will be updated in the list of menu items.

Arguments

• prevName (string) – the initial name of the item

• actualName (string) – the actual name of the item

Returns disposable – - an item that may be disposed

Examples:

renameMenuItem('WYLIODRIN_API', 'WYLIODRIN_STUDIO_API');

6.1. Workspace plugin API 69

Wyliodrin Studio Documentation, Release 2.2.3-beta

registerDeviceToolButton(deviceType, name, priority, action, iconURL, options)
This function is used to register a new device tool button, specific for every device type.

For example, when a Raspberry Pi board is connected, the following buttons become available: Run, Stop,
TaskManager, PackageManager, NetworkManager.

Each device button require a deviceType, to know for which type of device we are registering the customized
button, it has a translatable name, that will be displayed under it on mouse hover, a priority, which refers to the
position of an element in the device buttons list, an action, representing the content that will be opened when
the button is selected, an icon that will be the actual symbol of the button and on which the user will be able to
click, and aditional options, that will authorize or will block the user access, depending on their value.

The default value of these options is () => return true, which means the device button will be visible and will
allow user access, but it can be customized at the moment of the registration of one element.

If the value of enabled will be changed to another function, the name of the device button will still be visible in
the list of all device buttons, but it won’t permit any user action, because the button will not become usable until
the return value of the function will be true.

If the value of the visible option is changed to another function, the name of the device button will not appear
in the list with all device buttons until the return value of the function will become true; in this case, when the
element is visible, it becomes automatically enabled.

Arguments

• deviceType (string) – the device driver type the button is for

• name (string) – the name/id of the menu item

• priority (number) – the priority of the tab, lower is to the left

• action (function) – the function to run when clicked

• iconURL (string) – the relative path to the image assigned

• options (Object) – additional options, like visible or enabled; the button is available
for user interaction according to the value of these options

Returns disposable – - an item that may be disposed

Examples:

let time = new Date();

registerDeviceToolBotton('RUN', 10, => showNotification('You clicked the Run
→˓button!'),

'plugins/studio/workspace/data/img/icons/button.svg', {
visible() {

return time.getHours() > 8;
}

});

This example creates a characteristic device button called ‘Run’, that will display a notification when clicked. Because
of the visible option, the button will appear in the list of all tool buttons only after 8AM.

70 Chapter 6. Wyliodrin Studio API

Wyliodrin Studio Documentation, Release 2.2.3-beta

6.1.3 Status Bar

registerStatusButton(name, priority, component, iconURL, options)
This function will register a new button in the status bar that is displayed in the bottom of the window.

Each status button has a translatable name, that will be displayed under it on mouse hover, a priority, which
refers to the position of an element in the status buttons list, a component, representing the content that will be
shown when the button is clicked, an icon that will represent the actual symbol of the button and on which the
user will be able to click, and aditional options, that will authorize or will block the user access, depending on
their value.

The default value of these options is () => return true, which means the status button will be visible and will
allow user access, but it can be customized at the moment of the registration of one element.

If the value of enabled will be changed to another function, the name of the status button will still be visible in
the list of all status buttons, but it won’t permit any user action, because the button will not become usable until
the return value of the function will be true.

If the value of the visible option is changed to another function, the name of the status button will not appear
in the list with all status buttons until the return value of the function will become true; in this case, when the
element is visible, it becomes automatically enabled.

The statusButtons registered at the moment can open the Console and the Mqtt server interface.

Arguments

• name (string) – the name/id of the menu item

• priority (number) – the priority of the tab, lower is to the left

• component (Vue) – the Vue component to display

• iconURL (string) – the relative path to the image assigned

• options (Object) – additional options, like visible or enabled; the button is available
for user interaction according to the value of these options

Returns disposable – - an item that may be disposed

Examples:

registerStatusButton('CONSOLE', 1, Console, 'plugins/studio/console/data/img/
→˓icons/terminal-icon.svg');

In this example, a new status button is created. The Console component has to be previously created as a Vue compo-
nent and imported in the index.js file where the new status button is registered:

import Console from './views/Console.vue';

openStatusButton(name)
Open a status button, using the dispatchToStore function to send to the activeStatusButton variable from the
workspace store the value of the chosen status button.

Arguments

6.1. Workspace plugin API 71

Wyliodrin Studio Documentation, Release 2.2.3-beta

• name (string) – the name of the status button to open

Examples:

openStatusButton('CONSOLE');

closeStatusButton()
Close a status button, using the dispatchToStore function to send to the activeStatusButton variable from the
workspace store an empty string, which means that the currently open status button is no longer available.

Examples:

closeStatusButton();

6.1.4 Data Store

registerStore(namespace, store)
This function registers a new namespaced store.

A “store” is basically a container that holds the application state. Since a Vuex store is reactive, when a Vue
component needs or changes a variable state, it will reactively and efficiently update the values.

Arguments

• namespace (string) – the name/id of the menu item

• store (Object) – the actual store object, imported from the ‘store.js’ file of the plugin

Returns undefined –

Examples:

registerStore('projects', projectStore);

getFromStore(namespace, variable)
Gets the value of a variable from a selected store.

Arguments

• namespace (string) – the name of the store where the variable is registered

72 Chapter 6. Wyliodrin Studio API

Wyliodrin Studio Documentation, Release 2.2.3-beta

• variable (string) – the name of the variable to process

Examples:

let project = getFromStore('projects', 'currentProject');

dispatchToStore(namespace, action, data)
Sends data to a selected store promptly and updates the state and value of a certain variable.

Arguments

• namespace (string) – the name of the store where the data will be dispatched

• action (string) – the variable to be updated

• data (Object) – additional data to send to the variable

Examples:

dispatchToStore('projects', 'currentProject', null);

6.1.5 Vue

registerComponent(component)
Register a Vue component.

Arguments

• component (Vue) – the Vue component to be registered

Examples:

registerComponent(MyComponent);

setWorkspaceTitle()
This function sets the title of the workspace according to the name of the current project.

The workspace title will be displayed to the left of the tabs list.

Examples:

6.1. Workspace plugin API 73

Wyliodrin Studio Documentation, Release 2.2.3-beta

setWorkspaceTitle (project.name);

6.1.6 Device Drivers

registerDeviceDriver(name, deviceDriver)
This function registers a new device type. It requires a name that indicates the type of the device for which it
will register the driver, and the actual device driver object, that include a series of properties and functions.

Arguments

• name (string) – device type name

• deviceDriver (DeviceDriver) – actual device driver, consists of a series of func-
tions necessary to represent, connect, disconnect or set up a device.

Examples:

registerDeviceDriver('my_device', deviceDriver);

updateDevices(type, dev)
This function updates the list of devices for a device type. It’s required to know the type of the device that will
be updated, and the list wilth all the devices that will be attached to the selected type of device.

Arguments

• type (string) – device type, has to be registered

• dev (Array.<Device>) – a list of devices (Device())

Examples:

updateDevices (myDevices);

connect(device, options)
The purpose of this function is to connect Wyliodrin STUDIO to a device.

In order to connect, it’s required to have a valid device object and the corresponding connection options. This
process demands to constantly check the device status.

74 Chapter 6. Wyliodrin Studio API

Wyliodrin Studio Documentation, Release 2.2.3-beta

The statuses that a device can have are:

DISCONNECTED - this is offline

CONNECTING - trying to connect

SYNCHRONIZING - trying to synchronize with the device

CONNECTED - this is online

ISSUE - there is some issue, the system is partially functional

ERROR - there is an error with the system

Arguments

• device (Device) – the device to connect to

• options (Device) – connect options

getDevice()
Returns a device from the store.

This function has no parameters and it’s using the getFromStore function, which returns a device object, with
all its properties. It’s useful to work with it each time you want to manipulate the currently connected device
and you need to know its type.

Examples:

let device = getDevice ();

getStatus()
This function returns the status of a device.

The function has no parameters and calls the getFromStore function, which returns from the workspace store a
string representing the current status of the device the user tries to work with.

Examples:

let status = getStatus();

disconnect()
This function disconnects the currently connected device from Wyliodrin STUDIO, which means that it deletes
the connections and characteristics of this device, as reported by the type of disconnection that the user chooses:

StandBy -

Disconnect -

6.1. Workspace plugin API 75

Wyliodrin Studio Documentation, Release 2.2.3-beta

Turn Off -

showConnectionSelectionDialog()
This function opens a customized dialog box, used to select a device that will be connected to Wyliodrin Studio.

It’s called when the user clicks on the ‘Connect’ button and it shows a dialog containing a list with all the devices
available for connection.

6.2 Projects plugin API

The “projects” plugin is the second most important component in our application. Same as “workspace”, it has its
own store, where we register the applications the user creates, in order to manage properly his activity.

6.2.1 Data Types

class Project()
Project Identification

Arguments

• date (string) – date and time of the last time the project was accsesed

• folder (string) – absolute path to the project

• language (string) – programming language of the project

• name (string) – the actual name of the project

76 Chapter 6. Wyliodrin Studio API

Wyliodrin Studio Documentation, Release 2.2.3-beta

class Language()
Programming Language Identification

Arguments

• addons (object) – the specific features of the language // language addons

• icon (string) – path to the language image

• id (string) – language name

• fileIcons (array) – array of language specific fileIcons

• options (Object) – language functions

class file()
File Identification

Arguments

• file (string) – extension if it’s a file

• children (Array.<file>) – children if it’s a folder

• path (string) – path to object

• name (string) – name of object

disposable()
a function that is called when the item may be deleted

6.2.2 Programming Languages

projects.getLanguage(languageID)
This function returns a programming language object with the following properties: id, title, icons, addons and
options.

It requires the unique id that identifies the language in the list of all programming languages.

Arguments

• languageID (string) – the id of said language

Returns Language – - programming language properties

registerLanguage(id, title, projectIcon, logoIcon, fileTreeIcon, fileIcons, options)
This function registers a language object by updating the list of all languages with a new programming language
having its own specifications and functions.

Every new language has an id, its unique identifier, a title, which is the actual name of the programming lan-
guage, a characteristic icon, and its own options required in order to be working properly.

6.2. Projects plugin API 77

Wyliodrin Studio Documentation, Release 2.2.3-beta

The accepted languages are: javascript, python, bash and visual.

Arguments

• id (string) – language id

• title (string) – language title

• projectIcon (string) – icon that appears in the projects library

• logoIcon (string) – icon that appears in the new application popup

• fileTreeIcon (string) – icon that appears at the top of the file tree

• fileIcons (string) – icons for files

• options (Object) – language options

Examples:

registerLanguage('python', 'Python', 'plugins/languages/python/data/img/project_
→˓python.png', 'plugins/languages/python/data/img/python.png', python);

In this example, the las parameter, python is an object previously created, its properties being the characteristic func-
tions for this programming language.

registerLanguageAddon(language, types, boards, options)
This function is used to add an addon to an already existing language. In this case, an addon refers to a specific
feature that can be set for a board.

Each addon requires the programming language unique id, the type of the board for which the feature will be
set, the type of the actual addon, and the additional functioning options of the feature.

Arguments

• language (Object) – language id

• types (string|Array.<string>) – addon type

• boards (string|Array.<string>) – addon board

• options (Object) – addon options

Returns boolean – - true if successful, false otherwise

registerEditor(name, languages, component, options)
This function registers a new type of editor.

The editor has a name, which is a translatable string that will be dispayed as the title of the editor, languages,
which represent the array with all the supported programming languages id’s or file extensions, and a Vue
component, representing the actual content and design of the editor tab.

Arguments

• name (string) – the name/id of the editor

78 Chapter 6. Wyliodrin Studio API

Wyliodrin Studio Documentation, Release 2.2.3-beta

• languages (Array.<string>) – the editor languages

• component (Vue) – the component to display

• options (array) – the editor options

Returns boolean – - true if successful, false otherwise

Examples:

registerEditor('EDITOR_ACE',['py','js'], Ace);

This is an example of how you can register an Ace editor that will accept python(py) and javascript(js) programming
languages. The Ace component will be designed as a Vue component for the editor and imported inside the main file
where the new editor is registered.

languageSpecificOption(project, option)
This function returns a specific option that was set to a programming language.

In order to obtain it, is required to have the project for which the option was set and the actual name of the
specific option.

Arguments

• project (Project) – project object

• option (string) – option

Returns Object – the specific option of the programming language

Examples:

let sourceLanguage = languageSpecificOption (project, {...});

6.2.3 Projects

createEmptyProject(name, language)
This function creates a new empty project.

Each project requires a name, that will be entered by the user as a text in the input area, and a programming
language that the project will use, also chosen by the user.

Arguments

• name (string) – Project name

• language (string) – Project language

Returns Project – - Project object

Examples:

6.2. Projects plugin API 79

Wyliodrin Studio Documentation, Release 2.2.3-beta

project = createEmptyProject('MyProject', 'py')

deleteProject(project)
This function deletes all the files related to the project chosen by the user, when he clicks on the “Delete” button.

After removing all the files, the currentProject and currentFile are dispatched to the projects store as null.

Arguments

• project (Project) – Project object

Returns boolean – true if succsesful, false otherwise

Examples:

deleteProject('MyProject');

renameProject(project, newName)
This function renames a selected project, when the user clicks on the Rename button.

It’s required to know the project that will be renamed and the new name, that will be entered by the user in the
input text area.

Arguments

• project (Project) – Project object

• newName (string) – New project name

Returns boolean – true if succsesful, false otherwise

Examples:

renameProject('MyProject', 'MyRenamedProject');

cloneProject(project, newName)
This function is used to clone a project, by creating a duplicate of the selected project and assigning to it the
“newName” value, chosen by the user.

Arguments

• project (Project) – Project object

• newName (string) – Cloned project name

Returns boolean – true if succsesful, false otherwise

Examples:

80 Chapter 6. Wyliodrin Studio API

Wyliodrin Studio Documentation, Release 2.2.3-beta

cloneProject(project, 'MyClonedProject');

importProject(project, data, extension)
This function imports a project archive.

Loads a new project tree from the user’s computer. The archive extension can be “.zip”, “.tar” (in this case the
files will be extracted), or ‘.wylioapp” (we are creating recursively the project folder).

Arguments

• project (Project) – project object

• data (Project) – data from project

• extension (string) – archive extension (.zip/.tar/.wylioapp)

Returns boolean – true if succsesful, false otherwise

Examples:

importProject(project, projectData, '.zip');

recursiveCreating(necesarry)
Recursively generate the project tree structure with paths and names

necesarry.item - file item

necessary.item.isdir - is or not directory

necessary.item.children - only if it’s a directory

necessary.item.name - name

necessary.item.content - file content only if it’s a file

Arguments

• necesarry (Object) – Object representing the details about every file withing the
project

Returns boolean – true if succsesful, false otherwise

exportProject(project)
This function exports a project archive.

It’s required to know the project that the user will export, including all of its files and folders, and the path to
where the project will be saved in the user’s computer. The archive will have the .zip extension.

Arguments

6.2. Projects plugin API 81

Wyliodrin Studio Documentation, Release 2.2.3-beta

• project (Project) – project object

Examples:

exportProject(project);

recursiveGeneration(project, file)
Recursively generate a deep object with all the contents of a project

Arguments

• project (Project) – Project object

• file (file) – File object

Returns file – the root of the folder with all its contents

loadProjects()
Load existing projects.

This function has no parameters. It creates a list with all the existing projects when it’s called, by reading all the
folders from the main path, workspacePath.

Returns Array.<Project> – - a list of projects

Examples:

let projects = loadProjects();

selectCurrentProject(project)
This function selects a project from the list with all the projects, when the users clicks on it, and it displays the
content of the project in the Application tab.

Arguments

• project (Project) – project object

Returns boolean – true if succsesful, false otherwise

loadPreviousSelectedCurrentProject()
Load a previous selected project. The function has no params, loads the project from local files.

Examples:

82 Chapter 6. Wyliodrin Studio API

Wyliodrin Studio Documentation, Release 2.2.3-beta

let project = loadPreviousSelectedCurrentProject();

generateStructure(project, isRoot)
This function generates the tree structure of a project.

Arguments

• project (Project) – project object

• isRoot (boolean) – true

Returns file – - the tree structure

getCurrentProject()
Get the current project structure.

The getFromStore function is called to load the content of the currentProject variable from the projects store.

Returns Project – project object

6.2.4 Files and Folders

newFile(project, name, data)
This function creates a new file inside a project. For this, it is required that we know the project for which the
new file is generated, the name that the file will have (actually represented by the absolute path to where the file
will be created), and, if necessary, the information that will be written in the file.

This option is valid only in the Advanced Mode.

Arguments

• project (Project) – project object

• name (string) – path to where to create the file

• data (string) – data to be written to file

Returns boolean – true if succsesful, false otherwise

Examples:

6.2. Projects plugin API 83

Wyliodrin Studio Documentation, Release 2.2.3-beta

newFile(project, '/main.js', 'console.log(\'Hello from JavaScript\');');

deleteFile(project, pathTo)
This function is used to delete a file from a project, and it needs the project containing the selected file and the
path to that file.

Arguments

• project (Project) – project object

• pathTo (string) – path to the file

Returns boolean – true if succsesful, false otherwise

Examples:

deleteFile(project, '/folder/file');

saveFile(project, name, buffer)
The purpose of this function is to save a file. It requires the project in which the file resides, the name of the file,
actually represented as the path to the file, and a buffer containing the data that will be saved in the created file.

Arguments

• project (Project) – project object

• name (string) – path to file

• buffer (string) – file buffer to be saved

Returns boolean – - true if successful, false otherwise

Examples:

saveFile(project, '/folder/file', Buffer.from ('...'));

loadFile(project, name)
This function loads the content of a file that was previously saved. In order to open the file, it’s needed to know
the project that the file belongs to, and the full name of the file, meaning its path.

Arguments

• project (Project) – project object

• name (string) – full file name with path

Returns Object – - file content

84 Chapter 6. Wyliodrin Studio API

Wyliodrin Studio Documentation, Release 2.2.3-beta

Examples:

let fileContent = loadFile(project, 'FileName');

changeFile(project, name)
Changes the current file to another one.

Arguments

• project (Project) – project object

• name (string) – path to file

saveSpecialFile(project, name, content)
The purpose of this function is to save a special settings file and it requires the project corresponding to the file,
the name of the file, actually represented as the path to the file, and the content that will be saved in the special
settings file.

Arguments

• project (Project) – project object

• name (string) – the path to the file

• content (Buffer) – the content of the file

Returns boolean – - true if successful, false otherwise

Examples:

saveSpecialFile(project, 'SpecialFileName', Buffer.from ('...'));

loadSpecialFile(project, name)
This function loads the content of a special settings file that was previously saved. In order to open the file, it’s
needed to know the project that the file belongs to, and the full name of the file, meaning its path.

Arguments

• project (Project) – project object

• name (string) – the path to the file

Returns Buffer – - the content of the special settings file, null otherwise

Examples:

loadSpecialFile('MyNewProject', 'SpecialFileName');

6.2. Projects plugin API 85

Wyliodrin Studio Documentation, Release 2.2.3-beta

getDefaultFileName(project)
The purpose of this function is to obtain the default file name of a project.

Usually, the name of this file is ‘main.ext’, where ext is the extension corresponding to the programming lan-
guage that defines the project.

Arguments

• project (Project) – project object

Returns string – - name of the default file

getDefaultRunFileName(project)
Get the default run file name of a project.

Usually, the name of this file is ‘main.ext’, where ext is the extension corresponding to the programming lan-
guage that defines the project.

Arguments

• project (Project) – project object

Returns string – - name of the default run file

getMakefile(project)
This function’s purpose is to get the makefile for file name of a project.

Arguments

• project (Project) – project object

Returns string – - name of the makefile

getFileCode(project, path)
This functions returns the code that was written into a file and it needs the project where the file is saved and the
path to the file.

Arguments

• project (Project) – project object

• path (string) – the path to the file

Returns Object – - the current file code

86 Chapter 6. Wyliodrin Studio API

Wyliodrin Studio Documentation, Release 2.2.3-beta

getCurrentFileCode()
Similar to the one defined before, this function also returns the code, but this time from the current file that is
opened in the current project.

Returns Object – - the current file code

newFolder(project, name)
This function creates a new folder inside a project. For this, it is required that we know the project for which the
new folder is generated and the name that the folder will have. The name is actually represented by the absolute
path to where the folder will be created.

This option is valid only in the Advanced Mode.

Arguments

• project (Project) – Project object

• name (string) – path to where to create the folder

Returns boolean – true if succsesful, false otherwise

Examples:

newFolder(project, '/folder/folder2');

deleteFolder(project, pathTo)
This function is used to delete a folder from a project, and it needs the project containing the selected folder and
the path to that folder.

Arguments

• project (Project) – project object

• pathTo (string) – path to the folder

Returns boolean – true if succsesful, false otherwise

Examples:

deleteFolder(project, '/folder/folder2');

renameObject(project, newName, pathTo)
This function is used to rename a file or a folder included in the currently open project.

6.2. Projects plugin API 87

Wyliodrin Studio Documentation, Release 2.2.3-beta

It’s required to know the project for which the change is made, the new name that will correspond to the selected
object and the path to the file/folder to be renamed.

Available only for the Advanced Mode, this function is called when the user choses the Rename option in the
menu that shows up by right clicking on a folder/file.

Arguments

• project (Project) – project object

• newName (string) – new name

• pathTo (string) – path to existing file/folder

Returns boolean – true if succsesful, false otherwise

Examples:

renameObject(project, 'ObjectNewName', '/folder/file');

6.3 Dashboard Graphs Plugins

The purpose of the dashboard plugins is to create a collection of graphs that update their values according to the signals
received from a connected device.

The main plugin, “dashboard”, designs the Dashboard tab, which contains the list with the graphs that the user can
draw, but it also serves as a store, where the states and values of the graphs are managed.

Inside the index.js file, we created the registerGraph function, that registers a graph component, with its data, options
and settings, and constantly updates the graphs array in the dashboard store. The parameters of this function are:

Parameter title Description
name graph label, translatable string
priority graph priority in the list of all graphs, lower means higher in the list of all graphs
iconURL the relative path to the image representing the graph
component the Vue component to display when the user chooses to draw a graph
options additional options

Also here we create the functions registerForSignal and emitSignal, that will be used by the graphs and the connected
device.

Here’s a list of the graphs that are currently available in the application: Gauge, Line, Speedometer, Thermometer,
Vumeter, Switch, Slider, Extra.

Each dashboard graph represents a new plugin, named “dashboard.graph.name”, where name represents the actual
name of the graph.

The views folder contains 2 Vue components:

88 Chapter 6. Wyliodrin Studio API

Wyliodrin Studio Documentation, Release 2.2.3-beta

• NameDialog.vue, where we design the dialog opened when the user clicks on one graph from the list, allowing
to customize the options and settings

• NameGraph.vue, where we use the vue2-highcharts module to draw a graph, according to the data entered by
the user in the dialog; more details about the available Highcharts and the parameters required for each chart
can be found here.

The index.js file of each graph has the purpose to call the registerGraph function from the main plugin dashboard,
where the component parameter is the NameGraph Vue component, and the options parameter is represented by on
object where we define the setup property. Here, we call a function that opens the NameDialog component and updates
each graph’s setup options according to the data inputted by the user.

Of course, in the package.json file we have to specify that each dashboard.graph plugin consumes the main dashboard
plugin.

6.4 Pin Layout plugin

The Pin Layout tab becomes visible for a user only when a board is connected to Wyliodrin STUDIO, and it loads
a “map” of the board and a legend of its pins. As we described in the How to add a wyapp board section, when we
register this type of device, we call the registerPinLayout function.

registerPinLayout(type, board, img)
This function registers a customized pin layout image for the connected device. It’s called each time you create
a plugin for a new type of board. Depending on the type of the device or on the name of the board, the purpose
of this function is to display the specified image within the Pin Layout tab.

Arguments

• type (string) – device type

• board (string) – board name

• img (string) – path to the pin layout image

For example, if you want to register a Raspberry Pi board, inside the corresponding plugin you will call this function:

studio.pin_layout.registerPinLayout ('wyapp', 'raspberrypi', 'plugins/devices/wyapp/
→˓devices/raspberrypi/data/img/pins-raspberrypi.png');

In this situation, the program will search for a device that has the ‘wyapp’ type, and the name of the corresponding
board ‘raspberrypi’.

However, you can register a pin layout only for a device type, and the selected image will be available for every device
that has that type, no matter the name of the board:

6.4. Pin Layout plugin 89

https://www.highcharts.com/

Wyliodrin Studio Documentation, Release 2.2.3-beta

studio.pin_layout.registerPinLayout ('wyapp', '', 'plugins/devices/wyapp/devices/
→˓raspberrypi/data/img/pins-raspberrypi.png');

Once a Raspberry Pi board is connected to Wyliodrin STUDIO, the Pin Layout tab will become available, and its
content will be:

The Vue component of this plugin, PinLayout.vue, is designed to change the pin layout image dynamically, according
to the device type and board, and to become enabled/disabled, depending on the status of the device (CONNECTED /
DISCONNECTED).

90 Chapter 6. Wyliodrin Studio API

Wyliodrin Studio Documentation, Release 2.2.3-beta

6.5 Console and Shell plugins

Both the Console and the Shell plugins depend on the xterm plugin.

The “xterm” plugin uses the xterm module in order to register a terminal that will allow the user to interact with a
connected board.

The terminal has 2 implemented buttons:

• clear: clear the content of the terminal

• reset: reboot the terminal

Both functions belong to the xterm Terminal, that is initialized when a device is connected. If there is no connected
device, the terminal won’t allow the user access and a replacement text will be displayed.

The Xterm Terminal functioning is based on events.

The title of the terminal is applied when a device is connected and it changes dynamically, according to the type of
the board. For example, if a Raspberry Pi board is connected, the title will be detected and automatically set to the
terminal as pi@raspberrypi.

6.5. Console and Shell plugins 91

Wyliodrin Studio Documentation, Release 2.2.3-beta

When the user starts typing commands in the terminal, the write function is called in order to save all the inputted data
into a buffer, unique for each terminal. We also retain the cursor position, to write the characters successively.

Another event is to resize the terminal and it has to be done at each update. The resizing action supposes to set the
geometry of the terminal (number of columns and rows).

Both console and shell plugins have the functionalities of the described Terminal, so they have to consume the xterm
plugin. However, there is a certain difference between the 2 components:

The purpose of the Console is to display a terminal that allows you to see the output of the projects that you run in the
Application tab.

92 Chapter 6. Wyliodrin Studio API

Wyliodrin Studio Documentation, Release 2.2.3-beta

The Shell terminal represents the main component of the Shell tab, that allows you to send command directly to the
board.

6.5. Console and Shell plugins 93

Wyliodrin Studio Documentation, Release 2.2.3-beta

6.6 Settings Plugin

The “settings” plugin consumes our filesystem plugin in order to save special files that contain various settings for
our plugins. The filesystem is implemented differently for each version of the Wyliodrin STUDIO application, but the
main idea is to manage all the files and folders used inside the program.

In order to obtain the data that was written into a special settings file, we need to read the content of this file located
inside a special settings folder.

The main functions of the settings plugin are:

storeSettings(plugin, data)
Save plugin settings.

For each plugin that this function is called for, we create an object with the data that will be stored and we use
the filesystem function writeFile to save the parsed content into the SETTINGS_FILE

Arguments

• plugin (string) – plugin name

• data (Object) – plugin data

94 Chapter 6. Wyliodrin Studio API

Wyliodrin Studio Documentation, Release 2.2.3-beta

loadSettings(plugin)
Load plugin settings.

For the selected plugin, we display the data saved inside the special settings file.

Arguments

• plugin (string) – plugin name

Returns Object – - the data inside the settings file

loadValue(plugin, name, value)
Load value from settings.

We first load the settings from a chosen plugin using the loadSettings function. If the setting object exists and
if there is a value for the chosen name property, we return that value.

Arguments

• plugin (string) – plugin name

• name (string) – property name

• value (Object) – the value to be associated to the property

Returns string – - the value in the settings file

storeValue(plugin, name, value)
Store value to settings.

The function first loads the existing settings of the selected project, then updates the chosen property of the
object with the value.

Arguments

• plugin (string) – plugin name

• name (string) – property name

• value (Object) – the value to be associated to the property

6.6. Settings Plugin 95

Wyliodrin Studio Documentation, Release 2.2.3-beta

96 Chapter 6. Wyliodrin Studio API

CHAPTER 7

How to write a plugin

7.1 Simple plugin

In this section, we will try to create a new plugin, called “button.example”, that will add a toolbar button which will
show a notification when is clicked.

The purpose of this tutorial is to help you to better understand the idea of plugin, the steps that you need to follow, the
structure and behavior of each component file, as they were explained in the Architecture chapter.

The first step will be to create the button.example folder inside the plugins directory.

Each plugin contains 2 special folders:

The first one is the data folder, that has to be copied exactly as it is created in the build folder of the program. This
data directory will include all the images used to represent the components of a plugin (tool buttons, icons), but also
other aditionals files needed in order to make your plugin run properly.

The second special component is the translations folder, which will contain the translatable key strings from your
plugin, and also their translations.

More details about how the translation function works can be found here.

Only to exemplify the content of this folder, we’ll create the messages-en.json (english language) and messages-
fr.json (french language).

In our index.js file, you can notice that we used 2 strings having the following format: ‘PLU-
GIN_STRING_TO_TRANSLATE’, more precisely: ‘EXAMPLE_BUTTON_NAME’ and ‘EXAM-
PLE_BUTTON_NOTIFICATION_TEXT’. It means that this key-strings have to be included in both our translation
files.

97

Wyliodrin Studio Documentation, Release 2.2.3-beta

As you can see in the Translations chapter, the value that the key string will receive has to be an object with 2
properties: message (the actual translation), description (a short definition of the string to translate).

By the end, your messages-ln.json (ln = language) files should look like this:

“messages-en.json”:

{
"EXAMPLE_BUTTTON_NAME": {

"message": "Notify",
"description": "This button pops-up a notification."

},
"EXAMPLE_BUTTON_NOTIFICATION_TEXT": {

"messages": "You have successfully created your button!",
"description": "This is the notification text when the user clicks

→˓the button."
}

}

“messages-fr.json”:

{
"EXAMPLE_BUTTTON_NAME": {

"message": "Notifier",
"description": "This button pops-up a notification."

},
"EXAMPLE_BUTTON_NOTIFICATION_TEXT": {

"messages": "Vous avez créé le bouton avec succès",
"description": "This is the notification text when the user clicks

→˓the button."
}

}

Then, we’ll add the package.json file. As mentioned before, the content of this type of file has to be an object with
the following properties:

Property title Description Required / Op-
tional

Default
value

name the name of the plugin (“button.example”) required -
version 0.0.1 required “0.0.1”
main the main file of the plugin, that will be “index.js” required “index.js”
plugin an object where we specify the characteristics of the plugin required -

The properties of the “plugin” component are:

98 Chapter 7. How to write a plugin

Wyliodrin Studio Documentation, Release 2.2.3-beta

Property title Description Required / Op-
tional

Default
value

consumes we specify from which other plugins our plugin uses exported
functions (required “workspace”)

required [“workspace”]

provides we specify if our plugin functions will be exported (“exam-
ple_button”)

optional []

target for which version of the program the plugin should be working:
browser or electron

required -

Finally, the content of our package.json will be:

{
"name": "button.example",
"version": "0.0.1",
"main": "index.js",
"private": false,
"plugin": {

"consumes": ["workspace"],
"provides": ["button_example"],
"target" : ["browser", "electron"]

}
}

The next step is to create the main file, called index.js.

If you already read this section, you probably noticed that in the index.js file we should’ve imported first the .vue files
from the views folder. In this plugin tutorial, we only register a simple button, which means that we don’t need a .vue
file to design a specific Vue component, so the views folder will also be missing.

Therefore, we’ll only need to initiate a studio variable to null and to create an empty object called button example.

After that, we have to export a setup function, its parameters being:

Property title Description Required / Op-
tional

Default
value

options additional options optional null
imports all the functions that our plugin collects from the plugins that it

consumes (in our case, the functions exported by workspace)
required -

register a function that will register the plugin object required -

Inside this function, the studio variable instantiated before will receive the imports value.

After that, we need to register our button, so we’ll call the worskpace function registerToolbarButton, which will
have the following parameters:

‘BUTTON_EXAMPLE_NAME’ the name of our button, a key string that will be translated
20 integer number representing the priority of our button in the list of all toolbar

buttons
() => stu-
dio.workspace.showNotification

the action that will be performed when the user clicks on this button

‘plugins/button.example/data/img/button.png’the relative path to the image that will represent our button

7.1. Simple plugin 99

Wyliodrin Studio Documentation, Release 2.2.3-beta

The showNotification function is also called from the workspace and its parameters are:

‘BUTTON_EXAMPLE_NOTIFICATION_TEXT’the key string that will be translated and will represent the text of our notification
‘success’ the notification type

By the end, our index.js file should look like this:

let studio = null;
let button_example = {};

export function setup(options, imports, register)
{

/* Collect the objects exported by the consumed plugins */
studio = imports;

/* Create a toolbar button that will display a notification */
studio.workspace.registerToolbarButton ('EXAMPLE_BUTTON_NAME', 20,

() => studio.workspace.showNotification ('EXAMPLE_BUTTON_NOTIFICATION_
→˓TEXT'),

'plugins/button.example/data/img/button.png');

/* Register the object that this plugin will provide */
register(null, {

button_example: button_example;
})

}

As you noticed above, when we registered the image corresponding to our button, we specified its relative path, which
includes some additional folders in our button.example plugin.

To test if you successfully created your first plugin, you have to rebuild the program using the 2 commands for electron
npx webpack, then npm start.

100 Chapter 7. How to write a plugin

Wyliodrin Studio Documentation, Release 2.2.3-beta

If you want to test this plugin, you will have to search for “button.example” in the docs/examples folder and copy it
inside the source/plugins folder, then rebuild the application to make the new plugin available.

7.2 How to create a device plugin

This type of plugin allows you to add and use a new device to the Wyliodrin STUDIO platform, so you need to properly
register its functions and characteristics.

Let’s suppose that you want to create your own device plugin, called “device.awesome”.

The data folder should contain all the images that you need to represent the device (the icon displayed in the list of
available devices) and its features (for example, the DeviceToolButtons), but also, if needed, the additional files that
you’ll use to make your device run projects.

The views folder has to include every Vue component relied to your device, for example: disconnect, device settings
or device manager dialogs.

For this example, we will create the AwesomeDisconnectDialog.vue component, that will contain the button that
disconnects the device:

<template>
<v-card class="disconnect">

<v-tooltip>
<template #activator="data">

<v-btn @click.stop="disconnect" class="icon-btn" ref=
→˓"reference">

<img src="plugins/device.awesome/data/img/
→˓icons/disconnect-icon.svg" :alt="$t('DEVICE_AWESOME_DISCONNECT')" class="s24">

</v-btn>
</template>
{{$t('DEVICE_AWESOME_DISCONNECT')}}

</v-tooltip>
</v-card>

</template>

<script>
/* The actual code goes here */

</script>

7.2. How to create a device plugin 101

Wyliodrin Studio Documentation, Release 2.2.3-beta

The script part will define the disconnect function and also an esc function, that will close the dialog containing the
Disconnect Button when the user presses the ‘Esc’ key:

export default {
name: 'AwesomeDisconnectDialog',
methods: {

disconnect ()
{

/* Send the 'disconnect' tag */
this.$root.$emit ('submit', {

disconnect: 'disconnect'
});

},
esc()
{

/* Emit the 'submit' signal from the child component to
→˓notify the parent that the dialog has to be closed */

this.$root.$emit('submit');
}

}
}

The package.json file will have the classic format, but if it’s necessary the “plugin” object will require an additional
property, called “optional”, where you will specify if the plugin consumes the console or the mqtt plugins.

For the example created, it won’t be necessary, so the content of this file will be:

{
"name": "device.awesome",
"version": "0.0.1",
"main": "index.js",
"private": true,
"plugin": {

"consumes": ["workspace", "projects"],
"provides": [],
"target": ["electron"]

}
}

The translations folder will also have the usual structure, including the messages-ln.json files with the unique keys
that you used in your device plugin, for each language of the program.

{
"DEVICE_AWESOME_DISCONNECT": {

"message": "Disconnect",
"description": "This button is used to disconnect a device."

}
}

102 Chapter 7. How to write a plugin

Wyliodrin Studio Documentation, Release 2.2.3-beta

The main file index.js is the most important for this type of plugin, as its purpose is to include all the functions and
characteristics that will make your device work.

You have to begin with importing all the Vue components that you created, and also all the modules and packages that
your device requires in order to work properly.

For the “device_awesome” plugin, the header of this file could look like this:

/* Here you will import all the modules required for the functioning of your device */

import AwesomeDisconnectDialog from './views/AwesomeDisconnectDialog.vue';

import { EventEmitter } from 'events';
import { connect } from 'http2';

let deviceEvents = new EventEmitter ();

let awesome_module = null;

let studio = null;
let workspace = null;
let devices = [];

let awesomeDevices = [];

let connections = {};

After that, you will create the functions needed to search and update your device type:

loadDevice: uses a specialized module to scan the operating system of the client and search for your type of device.

function loadAwesome ()
{

try
{

/* Any module that will allow you to find the type of device you have
→˓chosen */

return require ('awesome_module');
}
catch (e)
{

studio.workspace.error ('device_awesome: Awesome is not available '+e.
→˓message);

return {
list: function ()
{

return [
];

}
};

}
}

listDevice: will try to return a list of the available devices, if they can be found.

7.2. How to create a device plugin 103

Wyliodrin Studio Documentation, Release 2.2.3-beta

async function listAwesome ()
{

let ports = [];
try
{

ports = await awesome_module.list ();
}
catch (e)
{

studio.workspace.error ('device_awesome: failed to list awesome '+e.
→˓message);

}
return ports;

}

updateDevices: simply call the workspace updateDevices function.

function updateDevices()
{

workspace.updateDevices ([...devices, ...awesomeDevices]);
}

searchDevices: checks systematically the list with all the available devices found, trying to find those having the name
or the description fitting your type of device, then adds a new object to the devices array, with the relevant properties:
unique id, name, description, address, priority, icon, type of board, type of connection, and others additional options.

function search ()
{

if(!discoverAwesomeDevicesTimer)
{

discoverAwesomeDevicesTimer = setInterval (async () => {
let awesome_devices = await listAwesome ();
devices = [];
for(let awesomeDevice of awesome_devices)
{

/* Search only for the devices that have the same
→˓specifications as your Awesome Device, array and set its properties.*/

devices.push(awesomeDevice);
}
updateDevices ();

},5000);
}

}

Inside the setup function, you first have to obtain the list of devices that fit your awesome type:

export function setup (options, imports, register)
{

studio = imports;
awesome_module = loadAwesome();
search();

/* Code explained below */
}

After that, you will create the object you will register and export for your plugin, its properties being the functions that
will help the user manage your device on the Wyliodrin Studio platform:

104 Chapter 7. How to write a plugin

Wyliodrin Studio Documentation, Release 2.2.3-beta

defaultIcon: correlates a default icon to a device that doesn’t have any particular image already attached

defaultIcon ()
{

return 'plugins/device.awesome/data/img/icons/awesome.png';
}

registerForUpdade: registers to receive updates for a device

registerForUpdate (device, fn)
{

deviceEvents.on ('update:'+device.id, fn);
return () => deviceEvents.removeListener ('update:'+device.id, fn);

}

getConnections: returns the connections array for every unique device id

getConnections ()
{

let connections = [];
for (let deviceId in connections)
{

connections.push (connections[deviceId].device);
}
return connections;

}

connect: connects the device to Wyliodrin Studio; if there is no connection previously created for the current unique
id of the device, you should create a data transport path conforming with the type of your device;

connect(device, options)
{

/* Here goes the actual code that you will write in order to connect the
→˓device. */

setTimeout(() => {
device.status = 'CONNECTED';

}, 1000);
}

after that, according to the current status, you will bring up to date your device, using the updateDevices function and
you will set up its functioning characteristics.

The device statuses are:

DISCONNECTED the device is offline
CONNECTING trying to connect
SYNCHRONIZING trying to synchronize with the device
CONNECTED the device is online
ISSUE there is some issue, the system is partially functional
ERROR there is an error with the system

disconnect: opens a dialog where the user chooses the way he wants to disconnect the device; the methods of discon-
nection are:

• StandBy -

• Disconnect -

7.2. How to create a device plugin 105

Wyliodrin Studio Documentation, Release 2.2.3-beta

• Turn-Off -

disconnect(device, options)
{

/* Here goes the actual code that you will write in order to connect the
→˓device. */

setTimeout(() => {
device.status = 'DISCONNECTED';

}, 1000);
}

After creating the new device object, you have to register it using the workspace function registerDeviceDriver.

workspace = studio.workspace.registerDeviceDriver('awesome', device_awesome);

Here you can also generate the specific buttons for your type of device, using also an workspace function: registerDe-
viceToolButton.

For the awesome device we create a Run button, that will run the code written by the user in the current project.

workspace.registerDeviceToolButton('DEVICE_AWESOME_RUN', 10 async () => {
let device = studio.workspace.getDevice ();

/* Here goes the actual code that will make your device run a project */
console.log('Run');
}, 'plugins/device.awesome/data/img/icons/run-icon.svg',

/* The aditional options that make the Run Button visible and enabled only if
→˓there is a connected device

and its type is "awesome" */
{

visible () {
let device = studio.workspace.getDevice ();
return (device.status === 'CONNECTED' && device.connection

→˓=== 'awesome');
},
enabled () {

let device = studio.workspace.getDevice ();
return (device.status === 'CONNECTED' && device.connection

→˓=== 'awesome');
},
type: 'run'

});

Also, if your device interacts with the console or the mqtt server, you will have to create some specific functions that
will establish the data transfer protocol.

At the end of the setup function, we register the device_awesome object:

register(null, {
device_awesome

});

If you want to test this plugin, you will have to search for “device.awesome” in the docs/examples folder and copy it

106 Chapter 7. How to write a plugin

Wyliodrin Studio Documentation, Release 2.2.3-beta

inside the source/plugins folder, then rebuild the application to make the new plugin available.

7.3 How to add a wyapp board

If you’re trying to add a new board plugin, our “device.wyapp.raspberrypi”, “device.wyapp.beagleboneblack” and
“device.wyapp.udooneo” plugins may serve as a support for you.

In the index.js file, inside the setup function, you need to create an event, so when the board is ‘ready’, you call the
registerPinLayout function from our “pinlayout” plugin. The purpose of this function is to register the pins of your
board in the Pin Layout tab, using the appropriate images that you saved in the data folder of our plugin.

For example, if we are connected to a Raspberry Pi, the content of the Pin Layout tab will be:

The next step is to create an object having your new board name, with the next functions:

iconURL() => the image corresponding to your board

found(device) => if a device was found, you can modify some of its properties

update(device) => update a device, modify some of its properties

run(project) => modify the project before run

7.3. How to add a wyapp board 107

Wyliodrin Studio Documentation, Release 2.2.3-beta

The final step is to register your board and, if it’s necessary, the blocks that you’ll use, from the “editor_visual” plugin.

For example, if you want to register a raspberry pi board, you should use this function:

registerBoard ('raspberrypi', raspberrypi);

7.4 How to write an editor plugin

The purpose of an editor plugin is to create a code editor, correlated to our “projects” plugin. The editor will allow
the user to open different type of files created or imported within the tree structure of a project.

If you are creating an editor plugin, we recommend you to name the folder “projects.editor.”, followed by the name
of your editor.

For example, in this tutorial we will create an awesome editor, that will display the content of the files having the .aws
extension.

The first step is to create the package.json file, which will have the classic structure:

{
"name": "projects.editor.awesome",
"version": "0.0.1",
"main": "index.js",
"private": true,
"plugin": {

"consumes": ["workspace","projects"],
"provides": [],
"target": ["electron", "browser"]

}
}

In this example, the editor will use functions only from the “workspace” and “projects” plugins, but you are free to
“consume” any other plugin required by your editor.

After that, wi will add the views folder, where you will design the Vue components for your editor, in this example
AwesomeEditor.vue. In the template section, you will actually add the tags required by the code editor, while in the
script part you will handle the functions that your editor will perform in order to display the content of the supported
files.

<template>
<!-- Here goes the design of your editor -->

</template>

/* <script> */

import path from 'path';

export default {
name: 'AwesomeEditor',

/* We pass the 'project' (path to the current project) and 'filename' (name
→˓of the opened file, including extension)

in order to read the content of the file and handle it depending on the
→˓type of extension (continues on next page)

108 Chapter 7. How to write a plugin

Wyliodrin Studio Documentation, Release 2.2.3-beta

(continued from previous page)

*/
props: ['project', 'filename'],
data() {

return {
/* All the variables you will use in the template section */

}
},
methods: {

/* Code of all the function you will use in the template section */
},
watch:
{

filename:
{

immediate: true,
async handler()
{

/* Full path to the current file */
let filePath = path.join(this.project.folder, this.

→˓filename);

/*Extension of the current file */
let extension = this.filename.substring(this.filename.

→˓lastIndexOf('.')).substring(1);

/* Get the content of the current file */

let content = await this.studio.filesystem.
→˓readFile(filePath);

/* Here goes the code for your file editor */

}
}

}

}
/* </script> */

The final step is to create the index.js file, where you will register your editor. The structure of this file should look
like this:

import AwesomeEditor from './views/AwesomeEditor.vue';

export default function setup (options, imports, register)
{

const studio = imports;
studio.projects.registerEditor('EDITOR_AWESOME',['aws'], AwesomeEditor);

register (null, {});
}

The AwesomeEditor is registered using the registerEditor function:

registerEditor(name, languages, component, options)
This function registers a new type of editor.

The editor has a name, which is a translatable string that will be dispayed as the title of the editor, languages,

7.4. How to write an editor plugin 109

Wyliodrin Studio Documentation, Release 2.2.3-beta

which represent the array with all the supported programming languages id’s or file extensions, and a Vue
component, representing the actual content and design of the editor tab.

Arguments

• name (string) – the name/id of the editor

• languages (Array.<string>) – the editor languages

• component (Vue) – the component to display

• options (array) – the editor options

Returns boolean – - true if successful, false otherwise

Examples:

registerEditor('EDITOR_ACE',['py','js'], Ace);

7.5 How to write a language plugin

The purpose of this type of plugins is to register a new programming language that will be supported by the Wyliodrin
Studio IDE.

For example, we’ll try to add a new programming language, called “MyAwesomeLanguage”, with the “.aws” exten-
sion:

As you can notice, the name of this type of plugins should begin with “language.”, which will be followed by the
actual name of the programming language that you want to register, which means that you will have to create a new
folder, “language.awesome”.

As any other plugin, it’s required to have a package.json file, having the classic format. It’s necessary to mention
that this type of plugin consumes both “workspace” and “projects” plugins, and their target are both “electron” and
“browser”.

So, the content of your package.json should look like that:

{
"name": "language.awesome",

"version": "0.0.1",
"main": "index.js",
"private": true,
"plugin": {

"consumes": ["workspace","projects"],
"provides": [],
"target": ["electron", "browser"]

}
}

The language plugin doesn’t have any Vue component, so we don’t have to create the views folder, but we need the data
folder to save a characteristic image for the programming language. Let’s pick as example for our language.awesome
plugin, an icon that we will save in the data/img folder:

110 Chapter 7. How to write a plugin

Wyliodrin Studio Documentation, Release 2.2.3-beta

Inside the main file, index.js, we obviously need to initialize the studio variable to null, and inside the setup function
it will receive all the imported functions from the “workspace” and “projects” plugin.

The next step is to create the awesome object, containing the options of our programming language:

let studio = null;

export default function setup (options, imports, register)
{

studio = imports;

let awesome = {

/* Create the main file of each project, "main.aws" */
async createProject(name){

await studio.projects.newFile(name,'/main.aws','print ("Hello
→˓from Awesome")');

},

/* Return the name of the default file */
getDefaultFileName() {

return '/main.aws';
},

/* Return the name of the default run file */
getDefaultRunFileName() {

return '/main.aws';
},

/* Return the content of the makefile */
getMakefile(project, filename) {

if (filename[0] === '/')
filename = filename.substring (1);

return 'run:\n\tawesome main.aws';
},

};
}

The next step is to register the new programming language, using the function registerLanguage:

studio.projects.registerLanguage('awesome', 'awesome', 'plugins/language.awesome/data/
→˓img/project.png', 'plugins/language.awesome/data/img/awesome.png', awesome);

where the last parameter represents the awesome object we created before.

If you want to test this plugin, you will have to search for “language.awesome” in the docs/examples folder and copy
it inside the source/plugins folder, then rebuild the application to make the new plugin available.

7.5. How to write a language plugin 111

Wyliodrin Studio Documentation, Release 2.2.3-beta

7.6 How to add a language addon plugin

This type of plugin modifies the language plugin for certain devices. For instant, we are using it for visual and rpk. To
design your own language addon, you will have to create a new plugin folder, called “language.visual.”, followed by
the type of the device you want the language addon for.

For example, let’s say that you want to create an addon for your Awesome device and you need to create a new plugin,
called language.visual.awesome

The first step is to create a new folder, visual, where you will addjs files.

You will also have to create a toolbox.xml file, where you will include the actual design of the blocks you want to be
available for your device.

The index.js file will first import the xml module and the toolbox.xml file, the second one as a string, using the raw-
loader module. More details about this webpack loader can be found here.

import xml from 'xml-js';
import toolboxStr from 'raw-loader!./visual/toolbox.xml';

Then, you will import the code and the blocks from the .js files included in the visual folder.

let blocks = require ('./visual/definitions_for_awesome.js');
let code = require ('./visual/code_for_awesome.js');

The setup function will register the changes you made for your device, using the projects function registerLanguageAd-
don.

let studio = null;
export function setup (options, imports, register)
{

studio = imports;

studio.projects.registerLanguageAddon ('visual', 'awesome', 'awesome', {
getDefaultRunFileName ()
{

return '/main.visual.js';
},

sourceLanguage ()
{

return 'awesomelanguage';
}

});

(continues on next page)

112 Chapter 7. How to write a plugin

https://github.com/webpack-contrib/raw-loader

Wyliodrin Studio Documentation, Release 2.2.3-beta

(continued from previous page)

let toolbox = xml.xml2js (toolboxStr);
studio.editor_visual.registerBlocksDefinitions ('awesome', blocks, code,

→˓toolbox, {type: 'awesome', board: 'awesome'});

register (null, {});
}

As you can notice, the final step is to parse the toolbox string imported before and then to register the blocks using the
registerBlocksDefinitions function from the projects.editor.visual plugin.

The parameters of this function are:

Property title Description Required / Op-
tional

Default
value

id the id of the device required -
blocks the blockly visual blocks required -
code the blockly code required -
toolbox the parsed toolbox string required -
options additional options, an object where you can specify the device

type and the board
optional {}

Of course, you also need to have a package.json file, where you should mention that your language addon plugin also
consumes “editor_visual”, because it’s using the registerBlockDefinitions function.

{
"name": "language.visual.awesome",
"version": "0.0.1",
"main": "index.js",
"private": true,
"plugin": {

"consumes": ["workspace","projects","editor_visual"],
"provides": [],
"target": ["electron"]

}
}

If you want to test this plugin, you will have to search for “language.visual.awesome” in the docs/examples folder
and copy it inside the source/plugins folder, then rebuild the application to make the new plugin available.

7.6. How to add a language addon plugin 113

Wyliodrin Studio Documentation, Release 2.2.3-beta

114 Chapter 7. How to write a plugin

CHAPTER 8

Translations

Each plugin has a translations folder, where you can find the messages-ln.json files, one for each language available
in our application. These files contain an object with a list of key-value sets.

In the .vue files you will use strings on different purposes (for example, to name a button) and you will need to update
their translation according to the language you choose in the app. This action is possible using our translation function
$t, that can be used in 2 forms:

1. Vue template

{{ $t('PLUGIN_STRING_TO_TRANSLATE') }}

where PLUGIN will be the name of your plugin and STRING_TO_TRANSLATE is a keyword for the actual text that
you want to add.

2. Code

this.vue.$t(text)

where text is a parameter of a function (for example showNotification) that includes the translation function.

We use this.vue.$t(text) so the program knows to translate the parameter text, regardless of the value it receives. When
we call the showNotification function, text will also receive a keyword, for example:

showNotification('PLUGIN_STRING_TO_TRANSLATE');

In both situations, ‘PLUGIN_STRING_TO_TRANSLATE’ is a key that you will include in the messages-ln.json file,
for each language. Its corresponding value is a new object, that contains a message (the translation itself) and a
description.

115

Wyliodrin Studio Documentation, Release 2.2.3-beta

For example, let’s say that in your message-en.json (English language) you want to translate the word ‘Close’, that
will be attached to a button.

{
"MYNEWPLUGIN_CLOSE": {

"message": "Close",
"description": "This button is used to close the current window."

}
}

As you can imagine, in your messages-fr.json (French language), you’ll have:

{
"MYNEWPLUGIN_CLOSE": {

"message": "Fermer",
"description": "This button is used to close the current window."

}
}

8.1 Load and Send translation files

Inside the Wyliodrin Studio repository, you will find a directory named tools, which includes a translation sub-
directory, with a translation.js main file. Here, you have 2 options to run this file:

node translation.js

This command joins all the key-value sets from all the existing plugins, for each language, into the messages-ln.json
files from the current translation folder. It also checks for errors through all these files, using as reference file the
english translation, and it lets you know if there are missing or duplicate keywords in a certain language.

116 Chapter 8. Translations

Wyliodrin Studio Documentation, Release 2.2.3-beta

node translation.js send

Compiling the code with the ‘send’ argument helps you split all the translations in a messages-ln.json file according
to the plugin related to each key-value set. It also copies the description from the english translation and applies it to
the corresponding keyword for every other language.

8.1. Load and Send translation files 117

Wyliodrin Studio Documentation, Release 2.2.3-beta

118 Chapter 8. Translations

CHAPTER 9

Dialogs and Notifications

In the “workspace” plugin you will find, additionally to the functions presented in the API sections, some functions
designed to create and display some customized pop-ups, like dialogs, prompts and notifications.

9.1 Dialogs

A dialog is a component that informs users about a specific task and may contain important informations, require
decisions, or involve multiple actions or inputs. It can usually be used to collect data from the user.

showDialog(title, component, options, buttons, values={})
This function shows a dialog that can contain informations about an application component or that can require
user actions.

The dialog will have a translatable title, displayed on the top of the box, a Vue component specifically designed
to collect the required data from the user, additional options and buttons to customize the dialog window, and
the values option that allow the translation of some system variables the user is working with.

Arguments

• title (string|object) – the title of the dialog window

• component (Vue) – the Vue component to display

• options (Object) – additional like width

• buttons (Array.<Object>) – the array of buttons to display

• values (Object) – values to insert into the translatable text

For example, having the Simple plugin created, let’s say that when the button is clicked, you want to open a simple
dialog with an input text area and a “Close” button. The content of the ButtonDialog.vue component will be:

119

Wyliodrin Studio Documentation, Release 2.2.3-beta

<template>
<v-card>

<v-card-text>
{{$t('BUTTON_EXAMPLE_INPUT_TEXT')}}
<v-text-field></v-text-field>

</v-card-text>

<v-card-actions>
<v-btn text @click="close">Close</v-btn>

</v-card-actions>
</v-card>

</template>

Inside the script section, you will define the methods that your component needs:

export default {
name: 'ButtonDialog',
data() {

return {

}
},
methods: {

close() {
this.$root.$emit ('submit', undefined);

}
}

}

The index.js file will have the following structure:

import ButtonDialog from './views/ButtonDialog.vue';

let studio = null;

export function setup(options, imports, register)
{

studio = imports;

/* Register a toolbar button that on click will reveal a dialog with the
→˓specified title, image and component */

studio.workspace.registerToolbarButton ('BUTTON_EXAMPLE_NAME', 20,
() => studio.workspace.showDialog ('BUTTON_EXAMPLE_DIALOG_TITLE',

→˓ButtonDialog),
'plugins/button.example/data/img/button.png');

register(null, {
button_example: button_example

});
}

The title parameter is not mandatory when you call the showDialog function, because you can choose the title of a
dialog box within the Vue file that designs this component.

For example:

<template>
<v-card>

(continues on next page)

120 Chapter 9. Dialogs and Notifications

Wyliodrin Studio Documentation, Release 2.2.3-beta

(continued from previous page)

<v-card-title>
{{ $t('BUTTON_EXAMPLE_DIALOG_TITLE') }}

</v-card-title>

<v-card-text>
{{$t('BUTTON_EXAMPLE_INPUT_TEXT')}}
<v-text-field></v-text-field>

</v-card-text>

<v-card-actions>
<v-btn text @click="close">Close</v-btn>

</v-card-actions>
</v-card>

</template>

The script section will have the same structure as before, while within the index.js file you will have to register your
button as it follows:

studio.workspace.registerToolbarButton ('BUTTON_EXAMPLE_NAME', 20,
() => studio.workspace.showDialog (ButtonDialog),
'plugins/button.example/data/img/button.png');

As you can notice, the showDialog function will use only the ButtonDialog component as parameter.

In both situations the result will be the same:

9.1. Dialogs 121

Wyliodrin Studio Documentation, Release 2.2.3-beta

9.2 Prompts

A prompt is actually a dialog box that requires a user decision. A prompt box is often used if you want the user to
input a value before entering a page, for example write a text or click on a button that will perform a certain action.

showPrompt(title, question, original, action, value={})
This function shows a customized prompt that waits for user input and collects data.

A prompt has a title, that is located at the top of the box and it indicates the purpose of the prompt, a question,
representing the requirement addressed to users, an original value contained in the input area, an action to be
performed, and the values option that allow the translation of some system variables the user is working with.

Arguments

• title (string) – the translatable title of the prompt to be displayed

• question (string) – the translatable question of the prompt to be displayed

• original (string) – the original translatable content of the input area

• action (Object) – the action performed

• value (Object) – values to insert into the translatable text

Examples:

showPrompt('PROJECT_RENAME_PROJECT', 'PROJECT_NAME_PROMPT','');

This prompt is used to rename a project. The ‘PROJECT_RENAME_PROJECT’ is a translatable key string that
corresponds to the title of the prompt (Rename Project) and ‘PROJECT_NAME_PROMPT’ represents the question or
the statement addressed to the user (Please input the name of the project). Both key strings have to be included within
the translations files.

The showPrompt function will return the value inputted by the user if he will click on OK and null otherwise, so that
you can perform different actions depending on its answer.

122 Chapter 9. Dialogs and Notifications

Wyliodrin Studio Documentation, Release 2.2.3-beta

showConfirmationPrompt(title, question, values={})
This function shows a customized prompt containing a simple question and waiting for a Yes/No response.

This prompt also has a title, that is located at the top of the box and it indicates the purpose of the prompt, a
question, addressed to users in order to confirm an action that will be performed, and the values option that
allow the translation of some system variables the user is working with.

Arguments

• title (string) – the translatable title of the prompt to be displayed

• question (string) – the translatable question of the prompt to be displayed

• values (Object) – values to insert into the translatable text

Examples:

showConfirmationPrompt('EXIT', 'WORKSPACE_TOOLBAR_EXIT_QUESTION');

9.3 Notifications

The notifications are simple pop-ups that inform the user about unauthorized actions, required operations or system
processes.

The possible types for a notification are: info, success, and warning, and each type has a distinct color.

showNotification(text, values={}, type, timeout=6000)
This function shows a notification that will inform the user about the current application state.

The notification will have a text content, that will be translated according to the current language of the program,
but it can also contain the name of one system variable the user is working with. This variable is included in the
values object in order to be translated, because its value can change dynamically. Each notification also has a
type, that will update the color of the notification box, and a timeout to be visible for the user, its default value
being 6 seconds.

Arguments

• text (string) – the translatable ID of the text to be displayed

9.3. Notifications 123

Wyliodrin Studio Documentation, Release 2.2.3-beta

• values (Object) – values to insert into the translatable text

• type (string) – the notification type: info/success/warning

• timeout (number) – timeout until the notification is dismissed automatically (0 for
never)

Examples:

studio.workspace.showNotification ('TRANSLATED_TEXT_ID', {title: 'the title'},
→˓'success', 5000);

In this situation, “title” is a variable that represents the title of the notification and will be included in the messages-
ln.json translation files as it follows:

{
"TRANSLATED_TEXT_ID": {

"message": "The title of your workspace is: {title}",
"description": "Text of the notification the user created."

}
}

title will be the actual name of your workspace, in this example: Workspace Title.

showError(text, value={}, timeout=6000)
This function sends an error notification in the application, when the user is trying to perform an unauthorized
action.

The error notification will have a text content, that will be translated according to the current language of the
program, but it can also contain the name of one system variable the user is working with. This variable is
included in the values object in order to be translated, because its value can change dynamically, and a timeout
to be visible for the user, its default value being 6 seconds.. In opposition to a basic notification, the default type
is error.

Arguments

• text (string) – the translatable ID of the text to be displayed

• value (Object) – values to insert into the translatable text

• timeout (number) – timeout until the notification is dismissed automatically (0 for
never)

Examples:

studio.workspace.showError ('TRANSLATED_TEXT_ID', {title: 'the title'}, 5000);

124 Chapter 9. Dialogs and Notifications

Wyliodrin Studio Documentation, Release 2.2.3-beta

Similar to showNotification, “title” is a variable that represents the title of the error notification and will be included in
the messages-ln.json translation files as it follows:

{
"TRANSLATED_TEXT_ID": {

"message": "The device: {title} was unable to connect.",
"description": "Text of the notification the user created."

}
}

title will be the name of the device you are trying to connect, in this example: AwesomeDevice.

9.3. Notifications 125

Wyliodrin Studio Documentation, Release 2.2.3-beta

126 Chapter 9. Dialogs and Notifications

CHAPTER 10

Emulators

10.1 QEMU Based

10.1.1 Install QEMU

The first step into running an emulator on your computer within Wyliodrin Studio is to install the right version of the
QEMU machine emulator for your computer.

Install QEMU for Linux.

Install QEMU for Windows.

If your PC is running on Windows, you will have to add qemu in the PATH variable. In order to accomplish that,
you will have to right click on This PC, select Properties, open the Environment Variables option, then edit the PATH
variable. Here, you will have to add the absolute path to the folder where you chose to install qemu. The last step is to
save the changes.

Install QEMU for mac OS.

Compile the QEMU source code.

127

https://www.qemu.org/download/#linux
https://www.qemu.org/download/#windows
https://www.qemu.org/download/#macos
https://www.qemu.org/download/#source

Wyliodrin Studio Documentation, Release 2.2.3-beta

10.1.2 Raspberry Pi Emulator

Once you have the QEMU machine installed on your computer, you will be able to emulate a Raspberry Pi within
Wyliodrin STUDIO. If you open the IDE, you will find the Emulator option between one of the items of the Menu.

If you don’t have any emulator previously created on your computer, the first tab will be automatically displayed in
the prompt that will pop up. Here, you will be able to see a list with all the supported types of emulators.

If you don’t have any kernel image, you will have the option to download one previously configured by us. By clicking
on the “Download image” button, a zip archive will be downloaded and unzipped in a special folder created on your
computer. Once the download and decompression processes will be done, 2, new options will be available for the
emulator.

As you can see in the picture shown above, you can either click on the “Delete image” button, that will permanently
remove the kernel image from your computer, or on the “Create new emulator” button.

This last option will pop up a prompt where you will be asked to input the name of your emulator. You will have to
enter a valid name, having at least one character, that has not been already used for another emulator. This action will

128 Chapter 10. Emulators

Wyliodrin Studio Documentation, Release 2.2.3-beta

start the boot process for your emulator, by copying the kernel image into a folder specifically created for the new
emulator. In a few minutes, the Raspberry Pi emulator will show up on your computer.

By switching to the second tab of the Emulator prompt, you will see a list of all the available emulators that exist on
your computer.

Here, for each available emulator, you will have 3 options:

• Stop Emulator - this button will kill the session for a chosen emulator, but your settings will be saved within
the special folder.

• Restart Emulator - this button will be visible on each restart of Wyliodrin STUDIO or after each stop of an
emulator. It will allow you to restart an emulator and to reload your changes and settings.

• Delete Emulator - this button will ask you if you really want to delete an emulator. By answering yes, the
selected emulator will be permanently removed from your computer and you will lose all the saved data.

Connect to the emulator

Once the emulator completely loaded, you will be asked to input the default username and password, which are: pi /
raspberry. After that, you will have to start the ssh session by typing: sudo systemctl ssh start

10.1. QEMU Based 129

Wyliodrin Studio Documentation, Release 2.2.3-beta

After that, you will be able to find your emulator in the Connection Menu and to connect to it.

130 Chapter 10. Emulators

CHAPTER 11

Simulators

11.1 RaspberryPi Simulator

The RaspberryPi Simulator is a plugin used for the simulation of simple circuits using a RaspberriPi. It can simulate
series circuits made of leds, buttons and LCDs. The code to be runned on the RaspberryPi is written in the Application
tab, and the only supported language is NodeJS. So, the basic 2 components of this plugin is the project and the
schema of the circuit.

11.1.1 Steps to use the RaspberryPi Simulator

You can use the RaspberryPi Simulator by following the next steps.

1. Connection

If you are connected to another device, disconnect from it. After that, press the CONNECT button in the headbar, and
afterwards choose the “RaspberryPi” that runs on the board raspberrypi_simulator. This simulates a connection to
a phisical board.

131

Wyliodrin Studio Documentation, Release 2.2.3-beta

2. RaspberryPi Simulator tab

After you connect to the RaspberryPi Simulator board, a new tab will appear on the right in the tab list, named
RASPBERRY PI. This tab has a structure of three components:

1. The button to open the list of examples It is located right under the tab list. After you press the button, a list
of examples will be opened on the left side. At the top of the list will be a button LOAD SCHEMA used
to load your own schema. We will discuss about that later.

132 Chapter 11. Simulators

Wyliodrin Studio Documentation, Release 2.2.3-beta

2. The circuit image It is located on the left side of the window. The image is interactive, meaning that the leds
can turn on, the buttons can pe pressed, and so on.

11.1. RaspberryPi Simulator 133

Wyliodrin Studio Documentation, Release 2.2.3-beta

3. The table of connections It is located on the right side of the window. Here you will see a simplified structure
of the connections, so you can see which pins are connected in order to know how to use the components.

134 Chapter 11. Simulators

Wyliodrin Studio Documentation, Release 2.2.3-beta

3. Load a project and run it

After you got accostumed to the RaspberryPi Simulator tab, you can load a project written in NodeJS. There are
only 2 libraries available at the moment, in order to control the GPIO pins on the RaspberryPi and the LCDs.

Afterwards, you can just press the RUN button and the code will start to execute. Also, the console remains active in
the RaspberryPi Simulator tab, so you can see the evolution of your code while interacting with the schema loaded.

11.1.2 Load your own schema

The RaspberryPi Simulator plugin runs on schemas created with Fritzing. A schema has 2 components:

• the image of the circuit, saved in a SVG format

• the netlist with the connections, saved in a XML format

In order to create your own schema, you can follow the next steps.

1. Download and open Fritzing

You can access the Fritzing download page by clicking here. After you download the application, open it. You will
see the below window.

11.1. RaspberryPi Simulator 135

https://http://fritzing.org/download/

Wyliodrin Studio Documentation, Release 2.2.3-beta

2. Add components

After you open the app, you have to go to the Breadboard tab. From this tab you will export the files required for the
schema, meaning the SVG image and the XML netlist. On the right-top side you will see a window with components.
From there you can search for the desired the components. The available components that are recognized by the
simulator are:

• RaspberryPi 3

• Pushbutton

• LED

• LCD 16x2

In order to place a component with just have to drag and drop it on the main panel from the Breadboard tab.

136 Chapter 11. Simulators

Wyliodrin Studio Documentation, Release 2.2.3-beta

3. Make connections

After you’ve placed all the required components, you have to acces the Schematic tab. There you will see all com-
ponents and you can make the connections between them. After the connections are done, you have to go back on
the Breadboard tab and make the phisical connections again. There will be dotted lines that correspond to the con-
nections from the Schematic tab. Also, you can edited the components from the window on the right-bottom. For

11.1. RaspberryPi Simulator 137

Wyliodrin Studio Documentation, Release 2.2.3-beta

example, you can change the color of the led, or the color of the wire.

4. Export from Fritzing

Attention! In order to export the files from the schema created, you have to be on the Breadboard tab.

To export the required files for the schema, you have to follow 2 steps:

• export the SVG file: File -> Export -> as Image -> SVG. . .

• export the XML netlist: File -> Export -> XML Netlist. . .

138 Chapter 11. Simulators

Wyliodrin Studio Documentation, Release 2.2.3-beta

You have to save the files on your computer in an easy accesible location, because you will need the afterwards.

5. Import to Wyliodrin STUDIO

To import the files just created with Fritzing, you have to follow the next steps:

• access the RASPBERRY PI tab

• click on the button to open the list with examples

• press LOAD SCHEMA, and a pop-up will appear on your screen

• give a name to your schema if you want

• press ADD SVG FILE and choose your just-created SVG file

• press ADD XML NETLIST and choose your just-created XML netlist

• press UPLOAD

If all the steps are followed correctly, your schema should appear on the main view, along side with the table of
connected components.

11.1. RaspberryPi Simulator 139

Wyliodrin Studio Documentation, Release 2.2.3-beta

11.1.3 Libraries for RaspberryPi Simulator

In the RaspberryPi Simulator you can almost fully use two main libraries: onoff.GPIO and LCD. The usage of these
libraries is the same as the usage on phisical boards. The only difference is that not every function is available. Bellow
you can see a list of available function for the 2 libraries. To see more of the usage for these libraries you can access
one of the links bellow:

• onoff

• LCD

onoff.GPIO:

• create(pin, state) -> creates an object from which you can control the GPIO pins on the RaspberryPi. The
state parameter is a string and it indicates the type for the pin input/output

• readSync() -> return the value readed by the pin 1/0

• writeSync(value) -> outputs on the GPIO pin the selected value 1/0

• direction() -> return the state of the pin

• setDirection(state) -> change the state of the pin

• activeLow() -> return the state of the activeLow property of the pin

• setActiveLow(value) -> change the activeLow property on the pin

LCD:

• create(object) -> it creates an object in order to interact with the LCD. The object contains 4 properties:
rs, e, data, cols, rows

• print(string) -> print the given string on the screen starting from the cursor current position

140 Chapter 11. Simulators

https://www.npmjs.com/package/onoff
https://www.npmjs.com/package/lcd

Wyliodrin Studio Documentation, Release 2.2.3-beta

• clear() -> clears the LCD screen

• home() -> sets the cursor on the cell 0x0 on the LCD

• setCursor(row, col) -> sets the cursor on the row line and col column

• scrollDisplayLeft() -> scrolls the display one position tp the left

• scrollDisplayRight() -> scrolls the display one position tp the right

• close() -> close the connection with the LCD and free the assigned pins

Attention! LCD library only supports the 16x2 LCD!

11.1.4 Code examples

Bellow are 2 code examples on how to use the onoff.GPIO library and the LCD library.

onoff.GPIO example

The schematic associated to this code should have a led connected to GPIO4 pin on the RaspberryPi and to the GND
pin, and a button connected to the GPIO22 pin and to the 3V pin.

This program will wait 2 seconds, will turn the led on, the will wait another 2 seconds and will turn it off. Afterwards,
it will remain in the while loop while the button is not pressed.

var Gpio = require("onoff").Gpio;

var led = new Gpio(4, "out");
var button = new Gpio(22, "in");

sleep(2000);
led.writeSync(1);
sleep(2000);
led.writeSync(0);

while(button.readSync() === 0) {
sleep(1000);

}

console.log("onoff.Gpio tutorial finished!");

LCD example

The schematic associated to this code should have a LCD connected as it follows:

• VSS connected to the GND pin

11.1. RaspberryPi Simulator 141

Wyliodrin Studio Documentation, Release 2.2.3-beta

• VDD connected to the 5V pin

• RS connected to the GPIO25 pin

• E connected to the GPIO2 pin

• DB4 connected to the GPIO23 pin

• DB5 connected to the GPIO17 pin

• DB6 connected to the GPIO18 pin

• DB7 connected to the GPIO22 pin

This program will write the “Hello world, from the LCD!” string on the LCD. Because it won’t fit, we will scroll the
display to the left for 10 times, and the we will clear the display. At the end, we close the connection to the LCD.

var LCD = require("lcd");
var lcd = new LCD({rs: 25, e: 2, data: [23, 17, 18, 22], cols: 16, rows: 2})

lcd.print("Hello World, from the LCD!");

sleep(2000);

for (var i = 0; i < 10; i ++) {
sleep(1000);

lcd.scrollDisplayLeft();
}

sleep(1000);
lcd.clear();

lcd.close();

console.log("LCD tutorial finished!");

142 Chapter 11. Simulators

Index

C
changeFile() (built-in function), 85
cloneProject() (built-in function), 80
closeStatusButton() (built-in function), 72
connect() (built-in function), 74
createEmptyProject() (built-in function), 79

D
deleteFile() (built-in function), 84
deleteFolder() (built-in function), 87
deleteProject() (built-in function), 80
Device() (class), 67
disconnect() (built-in function), 75
dispatchToStore() (built-in function), 73
disposable() (built-in function), 67, 77

E
exportProject() (built-in function), 81

F
file() (class), 77

G
generateStructure() (built-in function), 83
getCurrentFileCode() (built-in function), 87
getCurrentProject() (built-in function), 83
getDefaultFileName() (built-in function), 86
getDefaultRunFileName() (built-in function), 86
getDevice() (built-in function), 75
getFileCode() (built-in function), 86
getFromStore() (built-in function), 72
getMakefile() (built-in function), 86
getStatus() (built-in function), 75

I
importProject() (built-in function), 81

L
Language() (class), 76

languageSpecificOption() (built-in function),
79

loadFile() (built-in function), 84
loadPreviousSelectedCurrentProject()

(built-in function), 82
loadProjects() (built-in function), 82
loadSettings() (built-in function), 95
loadSpecialFile() (built-in function), 85
loadValue() (built-in function), 95

N
newFile() (built-in function), 83
newFolder() (built-in function), 87

O
openStatusButton() (built-in function), 71

P
Project() (class), 76
projects.getLanguage() (projects method), 77

R
recursiveCreating() (built-in function), 81
recursiveGeneration() (built-in function), 82
registerComponent() (built-in function), 73
registerDeviceDriver() (built-in function), 74
registerDeviceToolButton() (built-in func-

tion), 57, 70
registerEditor() (built-in function), 78, 109
registerLanguage() (built-in function), 77
registerLanguageAddon() (built-in function), 78
registerMenuItem() (built-in function), 53, 69
registerPinLayout() (built-in function), 89
registerStatusButton() (built-in function), 58,

71
registerStore() (built-in function), 72
registerTab() (built-in function), 56, 68
registerToolbarButton() (built-in function), 55
renameMenuItem() (built-in function), 69

143

Wyliodrin Studio Documentation, Release 2.2.3-beta

renameObject() (built-in function), 87
renameProject() (built-in function), 80

S
saveFile() (built-in function), 84
saveSpecialFile() (built-in function), 85
selectCurrentProject() (built-in function), 82
setWorkspaceTitle() (built-in function), 73
showConfirmationPrompt() (built-in function),

123
showConnectionSelectionDialog() (built-in

function), 76
showDialog() (built-in function), 119
showError() (built-in function), 124
showNotification() (built-in function), 123
showPrompt() (built-in function), 122
storeSettings() (built-in function), 94
storeValue() (built-in function), 95

U
updateDevices() (built-in function), 74

144 Index

	Getting Started
	Boards Setup
	General Architecture of Wyliodrin STUDIO
	Extension methods
	Deploy Application
	Wyliodrin Studio API
	How to write a plugin
	Translations
	Dialogs and Notifications
	Emulators
	Simulators
	Index

