

Wyliodrin Studio documentation

 Getting Started

Getting Started

Wyliodrin STUDIO is avalable in two versions: an offline or downloadable one and a web version.

Download the application

For Windows users:

Wyliodrin STUDIO beta_Windows 64 bit [https://wyliodrin-studio.s3.us-east-2.amazonaws.com/Wyliodrin+STUDIO+Setup+2.0.6-beta.exe]

For Linux users:

Wyliodrin STUDIO beta_Linux 64 bit [https://wyliodrin-studio.s3.us-east-2.amazonaws.com/Wyliodrin+STUDIO+2.0.6-beta.AppImage]

For Mac OS users:

Wyliodrin STUDIO beta_macOS [https://wyliodrin-studio.s3.us-east-2.amazonaws.com/Wyliodrin+STUDIO-2.0.6-beta.dmg]

Use the web version

You also have the possibility to run and use a browser version of Wyliodrin Studio, by copying the following link into your browser address bar:

beta.wyliodrin.studio

Build from source

If you wish to contribute to the improvement of the application or if you want to add your own features or plugins, our code is open source, which means you can clone it from our Github.

To download the source code, you must have a GitHub account. Open a terminal, choose the folder where you want to clone our repository and run the following command:

git clone https://github.com/wyliodrinstudio/WyliodrinSTUDIO

There are 2 methods to build and run the application:

To build the STANDALONE version, you will have to run the following commands:

npm install
npx electron-rebuild
npx webpack
npm run electron

To run the STANDALONE version , you will have to run the following command:

npm start

To build BROWSER version, you will have to delete the build folder, run:

npm install
npx webpack --config=webpack.browser.config.js
cd build
npm install

To run the BROWSER version , you will have to run the following command:

npm start

Once the application was installed and built, you can make changes on our source code, in order to improve it.

 Boards Setup

Boards Setup

	Raspberry Pi

	Beaglebone Black

	Udoo Neo

	Pico-Pi

	Adafruit CLUE (CircuitPython)

	ESP 8266 (MicroPython)

 Raspberry Pi

Raspberry Pi

This will show how to set up a Raspberry Pi device.

[image: ../_images/raspberrypi.png]

Video

A quick video explaining how to connect the Raspberry Pi. A detailed tutorial is available below.

 Beaglebone Black

Beaglebone Black

This tutorial will show you how to set up a Beaglebone Black device.

[image: ../_images/beagleboneblack.png]

Download the pre-configured image

The easiest way to set up a BeagleBone Black board so that it becomes available for Wyliodrin STUDIO is to download an image that is already configured.

Download the image for BeagleBone Black [https://wyliodrin-studio.s3.us-east-2.amazonaws.com/wyliodrin_studio_beagleboneblack_2019_09_17.zip].

Once the image downloaded and unziped, the only thing that you have to do is to flash it. After that, you can simply insert the SD card into the BeagleBone Black and your board should be visible within Wyliodrin STUDIO.

Set up the board manually

However, you can also choose to configure the required image by yourself.

This will imply flashing an image with the OS (Debian), installing the STUDIO Supervisor container and setting up some configuration files.

Download the Debian image

You will need to:

	Download a Debian Image

	Install the Studio Supervisor

	Setup a provisioning file

Download the Debian IoT [https://debian.beagleboard.org/images/bone-debian-9.5-iot-armhf-2018-10-07-4gb.img.xz] image from the Beagle Board foundation. This is the standard OS for the BeagleBone Black provided by the manufacturer.

Flash the image

The downloaded image needs to be flash (written) to an SD card. The minimum size of the SD card is 4 GB.

Note

We recommend a minimum of 8 GB Class 10 SD Card. For small applications 4 GB might be enough.

To flash the image, you will need a special software. The recommended application is Etcher [https://www.balena.io/etcher/].

Note

For Linux users, you may use the dd utility.

Install STUDIO Supervisor

To be able to access the Studio network, the BeagleBone Black needs to run the STUDIO Supervisor software. The following tutorial will explain how to install it.

After writing the SD Card, insert it into the board and start the device. You will have to access it. This can be done either by:

	connecting the BeagleBone Black to the network and use a SSH to connect to it

	connect a monitor and a keyboard to the board

If you are using SSH, you will have to input 192.168.7.2 as the host IP address and then login with the appropriate credentials:

username: debian

password: temppwd

Stop additional services

The BeagleBone Black image has several servers started. These are used mainly for development. Run the commands to stop them:

sudo systemctl disable bonescript.service
sudo systemctl disable bonescript-autorun.service
sudo systemctl disable bonescript.socket
sudo systemctl disable apache2
sudo systemctl disable cloud9.service
sudo systemctl disable cloud9.socket
sudo systemctl disable getty@tty1
sudo systemctl disable node-red.socket

Install Dependencies

The dependencies you will have to install are:

	supervisor: allows you to monitor processes related to a project

	redis: database management system

	build-essential: reference package for all the packages required for compilation

	git: required for the npm install command to download git included package

	python3-pip: python 3 programming language

sudo apt-get update
sudo apt-get install -y supervisor redis-server build-essential git python3-pip

To enable the Notebook tab, you should also run
sudo pip3 install redis pygments

Install Node.js

The next step is to install NodeJS [https://nodejs.org/en/download/].

For BeagleBone Black, the ARMv7 [https://nodejs.org/dist/v10.16.3/node-v10.16.3-linux-armv7l.tar.xz] version of Node.js is required, meaning that the bash commands are:

wget https://nodejs.org/dist/v10.16.3/node-v10.16.3-linux-armv7l.tar.xz

tar xvJf node-v10.16.3-linux-armv7l.tar.xz

After installing and unziping Node, you should reboot the board and restart the session and remove old node:

sudo rm /usr/bin/npm
sudo rm /usr/bin/npx
sudo rm -f /usr/lib/node_modules

Continue the configuration by running the following commands:

cd node-v10.16.3-linux-armv7l

sudo cp -R * /usr

sudo ln -s /usr/lib/node_modules /usr/lib/node

cd ..

rm -rf node-v10.16.3-linux-armv7l

Install studio-supervisor

In order to install studio-supervisor, the following commands are required:

sudo su -
npm install -g --unsafe-perm studio-supervisor

exit
sudo mkdir /wyliodrin

Write the supervisor script

Using nano editor, write the /etc/supervisor/conf.d/studiosupervisor.conf file with the following contents:

To start the editor, type

sudo nano /etc/supervisor/conf.d/studio-supervisor.conf

[program:studio-supervisor]
command=/usr/bin/studio-supervisor beaglebone
home=/wyliodrin
user=debian

Press Ctrl+X to save and exit the editor. Press Y when whether to save the file.

After that, you have to make the /wyliodrin directory your home directory:

sudo chown debian:debian /wyliodrin
cp /home/debian/.bashrc /wyliodrin/.bashrc

Note

While using the Pico-Pi device, you will need to run some commands as root, meaning that each time you will use sudo, the system will ask you to input the passwork. In order to be able to run the sudo command without entering a password, you will have to configure a setting.

You will have to run the sudo visudo command, which will open the etc/sudoers file. You will have to modify the content by moving the next line at the end of the file:

debian ALL=(ALL) NOPASSWD: ALL

The final step is to refresh the board by running the command:

sudo supervisorctl reload

Connecting via web

The connection of a BeagelBone Black board to the web version of Wyliodrin STUDIO demands an Internet connection and the creation of a file, wyliodrin.json, that will be written and stored on the SD card. The purpose of this configuration file is to keep a series of particular informations about the device and the platform, so the both instances be able to recognize and communicate with each other.

Acquiring the wyliodrin.json file assumes that you will have to launch the web version of the application and to click on the Connect button. After selecting the New Device option from the popup, a new dialog box will be opened and will ask you for the name of your new device.

Once you start typing the name of your device, a JSON structure is automatically generated depending on the entered data. The format of the object consists of the following properties:

	Property title

	Description

	token

	unique identifier for the device, automatically assigned by the program

	id

	device name, updated as you change the name in the input box

	server

	endpoint

The content of this JSON structure has to be copied into a file that you will name wyliodrin.json, as mentioned before.

To add this file, you will have to connect the device to Wyliodrin STUDIO, open the Shell tab and run:

sudo nano /boot/wyliodrin.json

After creating the configuration file to the destination indicated, you can hit the Connect button of the web application. At this point, you should see your BeagleBone Black device into the list of available devices and by clicking on its name you will be able to connect it to the IDE.

 Udoo Neo

Udoo Neo

This tutorial will show you how to set up a Udoo Neo device.

[image: ../_images/udooneo.png]

Set up the board manually

You can choose to configure the required image by yourself.

This will imply flashing an image with the OS (Ubuntu), installing the STUDIO Supervisor container and setting up some configuration files.

Download the Ubuntu image

You will need to:

	Download a Ubuntu Image

	Install the Studio Supervisor

	Setup a provisioning file

Download the Ubuntu 16 [https://drive.google.com/file/d/1BkJCJrtGcZWHHQtXeOLIWPspK3jqwiBZ/view] image for Udoo Neo.

Flash the image

The downloaded image needs to be flash (written) to an SD card. The minimum size of the SD card is 4 GB.

Note

We recommend a minimum of 8 GB Class 10 SD Card. For small applications 4 GB might be enough.

To flash the image, you will need a special software. The recommended application is Etcher [https://www.balena.io/etcher/].

Note

For Linux users, you may use the dd utility.

Install STUDIO Supervisor

To be able to access the Studio network, the Udoo Neo needs to run the STUDIO Supervisor software. The following tutorial will explain how to install it.

After writing the SD Card, insert it into the board and start the device. You will have to access it. This can be done either by:

	connecting the Udoo Neo to the network and use a SSH to connect to it

	connect a monitor and a keyboard to the board

If you are using SSH, you will have to input 192.168.7.2 as the host IP address and then login with the appropriate credentials:

username: udooer

password: udooer

Install Dependencies

The dependencies you will have to install are:

	supervisor: allows you to monitor processes related to a project

	redis: database management system

	build-essential: reference package for all the packages required for compilation

	git: required for the npm install command to download git included package

	python3-pip: python 3 programming language

sudo apt-get update
sudo apt-get install -y supervisor redis-server build-essential git python3-pip

To enable the Notebook tab, you should also run
sudo pip3 install redis pygments

Install Node.js

The next step is to install NodeJS [https://nodejs.org/en/download/].

For Udoo Neo, the ARMv7 [https://nodejs.org/dist/v10.16.3/node-v10.16.3-linux-armv7l.tar.xz] version of Node.js is required, meaning that the bash commands are:

wget https://nodejs.org/dist/v10.16.3/node-v10.16.3-linux-armv7l.tar.xz

tar xvJf node-v10.16.3-linux-armv7l.tar.xz

After installing and unziping Node, you should reboot the board and restart the session and remove old node:

sudo rm /usr/bin/npm
sudo rm /usr/bin/npx
sudo rm /usr/lib/node_modules

Continue the configuration by running the following commands:

cd node-v10.16.3-linux-armv7l

sudo cp -R * /usr

sudo ln -s /usr/lib/node_modules /usr/lib/node

cd ..

rm -rf node-v10.16.3-linux-armv7l

Install studio-supervisor

In order to install studio-supervisor, the following commands are required:

sudo su -
npm install -g --unsafe-perm studio-supervisor

exit
sudo mkdir /wyliodrin

Write the supervisor script

Using nano editor, write the /etc/supervisor/conf.d/studiosupervisor.conf file with the following contents:

To start the editor, type

sudo nano /etc/supervisor/conf.d/studio-supervisor.conf

[program:studio-supervisor]
command=/usr/bin/studio-supervisor udooneo
home=/wyliodrin
user=udooer

Press Ctrl+X to save and exit the editor. Press Y when whether to save the file.

After that, you have to make the /wyliodrin directory your home directory:

sudo chown udooer:udooer /wyliodrin
cp /home/udooer/.bashrc /wyliodrin/.bashrc

The final step is to refresh the board by running the command:

sudo supervisorctl reload

Connecting via web

The connection of a Udoo Neo board to the web version of Wyliodrin STUDIO demands an Internet connection and the creation of a file, wyliodrin.json, that will be written and stored on the SD card. The purpose of this configuration file is to keep a series of particular informations about the device and the platform, so the both instances be able to recognize and communicate with each other.

Acquiring the wyliodrin.json file assumes that you will have to launch the web version of the application and to click on the Connect button. After selecting the New Device option from the popup, a new dialog box will be opened and will ask you for the name of your new device.

Once you start typing the name of your device, a JSON structure is automatically generated depending on the entered data. The format of the object consists of the following properties:

	Property title

	Description

	token

	unique identifier for the device, automatically assigned by the program

	id

	device name, updated as you change the name in the input box

	server

	endpoint

The content of this JSON structure has to be copied into a file that you will name wyliodrin.json, as mentioned before.

To add this file, you will have to connect the device to Wyliodrin STUDIO, open the Shell tab and run:

sudo nano /boot/wyliodrin.json

After creating the configuration file to the destination indicated, you can hit the Connect button of the web application. At this point, you should see your Udoo Neo device into the list of available devices and by clicking on its name you will be able to connect it to the IDE.

 Pico-Pi

Pico-Pi

This will show how to set up a Pico-Pi device.

[image: ../_images/picopi.png]
To configure the Pico-Pi IMX8M board, it will be necessary to flash an image with the Ubuntu operating system, install the Studio-Supervisor container and set up some configuration files.

Download the pre-configured image

The easiest way to set up a Pico-Pi IMX8M board so that it becomes available for Wyliodrin STUDIO is to download an image that is already configured.

Download the image for PicoPi IMX8M [https://wyliodrinstudio.s3.eu-central-1.amazonaws.com/images/wyliodrin_studio_picopi_imx8m_2019_09_17.zip].

Once the image downloaded and unziped, the only thing that you have to do is to flash it. After that, your Pico-Pi board should be visible within Wyliodrin STUDIO.

Set up the board manually

Enable the USB mass storage device

The first step is to connect the Pico-Pi device directly to your computer, using the micro USB and USB type C cables.

If your computer is running on Linux, you should be able to see the ……………..

If you are using Windows, you will need an additional driver to see the COM ports:

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

After downloading and extracting the files, you should open the Device Manager, right click on the Ports section and select the driver. By the end, you should be able to see the following devices:

[image: ../_images/devicemanager.png]

Export the EMMC device as mass storage to the host computer

1. Set up the serial terminal

As the Pico-Pi is already directly connected to your computer, you have to get a serial terminal program running. For Linux, we suggest you to use screen, but any other serial terminal should work.

If you are using Windows, we recommend you to download and open Putty [https://www.putty.org/] and customize the session with the following options:

	Connection type

	Serial

	Serial line

	COM port for Pico-Pi, in this example COM9

	Speed

	115200

Once the session started, it will load U-boot and you will be able to see the text “Hit any key to stop autoboot:”. Pressing on a key will stop the boot process and a open a boot prompt.

Note

If the boot prompt doesn’t appear, you should reboot the board by pressing the Restart button.

2. List the accessible devices

In order to get a list with the MMC devices, you should run the following command:

mmc list

The output should look like this:

3. Export the EMMC device

To export the Pico-Pi device to the host computer, you will run the next command:

ums 0 mmc 0

The output will be:

UMS: LUN 0, dev 1, hwpart 0, sector 0x0, count 0xe90000
/

A rotating cursor will be visible while the USB Mass Storage is running and the boot prompt can be exited by pressing CTRL+C.

If you followed this steps, a new USB device should appear on your PC and you will use it to load the Ubuntu image.

Load the image into EMMC

Download the Ubuntu [ftp://ftp.technexion.net/demo_software/pico-imx8mq/pico-imx8m_pico-pi-imx8m_ubuntu-18.04_QCA9377_hdmi_20181109.zip] image from the TechNexion foundation. This is the standard OS for the Pico-Pi IMX8M provided by the manufacturer.

Flash the Ubuntu image

The downloaded image needs to be flash (written) directly to the Pico Pi.

To flash the image, you will need a special software. The recommended application is Etcher [https://www.balena.io/etcher/].

Once the Ubuntu image flashed on your Pico-Pi board, you will have to reboot the device by pressing on its Restart button and wait for it to boot the Ubuntu OS without pressing any key. When the boot process is finished, you will be asked to provide the login credentials. For this type of device, the login username is ubuntu, same as the password, ubuntu.

Install STUDIO Supervisor

To be able to access the Studio network, the Pico-Pi needs to run the STUDIO Supervisor software. The following tutorial will explain how to install it.

After writing the image on the device, you will have to connect the Pico-Pi to the network and use a SSH to connect to it.

Install Dependencies

The dependencies you will have to install are:

	supervisor: allows you to monitor processes related to a project

	redis: database management system

	build-essential: reference package for all the packages required for compilation

	git: required for the npm install command to download git included package

	python3-pip: python 3 programming language

sudo apt-get update
sudo apt-get install -y supervisor redis build-essential git python3-pip

To enable the Notebook tab, you should also run
sudo pip3 install redis pygments

Install Node.js

The next step is to install NodeJS [https://nodejs.org/en/download/].

For the Pico-Pi IMX8M you will need the ARMv8 [https://nodejs.org/dist/v10.16.3/node-v10.16.3-linux-arm64.tar.xz] version of Node.js, so you will run the following commands:

sudo apt-get install wget
wget https://nodejs.org/dist/v10.16.3/node-v10.16.3-linux-arm64.tar.xz

tar xvJf node-v10.16.3-linux-arm64.tar.xz

cd node-v10.16.3-linux-arm64

sudo cp -R * /usr

sudo ln -s /usr/lib/node_modules /usr/lib/node

cd ..

rm -rf node-v10.16.3-linux-arm64

Install studio-supervisor

In order to install studio-supervisor, the following commands are required:

sudo su -
npm install -g --unsafe-perm studio-supervisor

exit
sudo mkdir /wyliodrin

Write the supervisor script

Using nano editor, write the /etc/supervisor/conf.d/studiosupervisor.conf file with the following contents:

To start the editor, type

sudo apt-get install nano
sudo nano /etc/supervisor/conf.d/studio-supervisor.conf

[program:studio-supervisor]
command=/usr/bin/studio-supervisor picopi
home=/wyliodrin
user=ubuntu

Press Ctrl+X to save and exit the editor. Press Y when whether to save the file.

After that, you have to make the /wyliodrin directory your home directory:

sudo chown ubuntu:ubuntu /wyliodrin
cp /home/ubuntu/.bashrc /wyliodrin/.bashrc

Note

While using the Pico-Pi device, you will need to run some commands as root, meaning that each time you will use sudo, the system will ask you to input the passwork. In order to be able to run the sudo command without entering a password, you will have to configure a setting.

You will have to run the sudo visudo command, which will open the etc/sudoers file. You will have to modify the content by moving the next line at the end of the file:

ubuntu ALL=(ALL) NOPASSWD: ALL

If you are using Wyliodrin STUDIO locally, you will need to install the following utilities:

sudo apt-get install avahi-daemon
sudo apt-get install openssh-server

The final step is to refresh the board by running the command:

sudo supervisorctl reload

Connecting via web

The connection of a Pico-Pi IMX8M board to the web version of Wyliodrin STUDIO demands an Internet connection and the creation of a file, wyliodrin.json, that will be written and stored on the device. The purpose of this configuration file is to keep a series of particular informations about the device and the platform, so the both instances be able to recognize and communicate with each other.

Acquiring the wyliodrin.json file assumes that you will have to launch the web version of the application and to click on the Connect button. After selecting the New Device option from the popup, a new dialog box will be opened and will ask you for the name of your new device.

Once you start typing the name of your device, a JSON structure is automatically generated depending on the entered data. The format of the object consists of the following properties:

	Property title

	Description

	token

	unique identifier for the device, automatically assigned by the program

	id

	device name, updated as you change the name in the input box

	server

	endpoint

The content of this JSON structure has to be copied into a file that you will name wyliodrin.json, as mentioned before. Once the file created and saved, it has to be stored on boot partition of your Pico-Pi.

To mount the boot partition, you will have to run the following command:

sudo nano /etc/fstab

You will have to add the following text content within the fstab file:

/dev/mmcblk0p1 /boot auto ro 0 0

After copying the configuration file to the destination indicated, you can reboot your board using the Restart button. At this step, if you hit the Connect button of the web application, you should see your Pico-Pi device into the list of available devices and by clicking on its name you will be able to connect it to the IDE.

 Adafruit CLUE (CircuitPython)

Adafruit CLUE (CircuitPython)

Adafruit CLUE is a board similar to the Micro:Bit [https://microbit.org],
but based on the Nordic nRF52840 SoC. It includes the following sensors:

	9 axis inertial LSM6DS33 + LIS3MDL sensor

	humidity and temperature sensor

	barometric sensor

	microphone

	gesture, proximity, light color and light intensity sensor

It also has a 240x240 LCD display.

[image: ../_images/adafruit_clue.jpeg]
This documentation describes how to use the Adafruit CLUE [https://learn.adafruit.com/adafruit-clue] with CircuitPython [https://circuitpython.org/].

Adafruit CLUE can be used with both the offline and the web version (Google Chrome only) of WyliodrinSTUDIO.

Installing CircuitPython

You will have to follow these steps:

	Download CircuitPython

	Flash CircuitPython to the board

	Load the libraries

Download CircuitPython

CircuitPython is an Adafruit modified version of MicroPython. Adafruit provides a downloadable
image for several boards. You have to download the Adafruit CLUE CircuitPython image [https://circuitpython.org/board/clue_nrf52840_express].

Please download the latest stable version. This should be a UF2 file.

Flash the CircuitPython

The UF2 file that you have downloaded at the previous step has to be written to the board. Adafruit has provided a very
easy method to do that. Connect your board to your computer using a USB cable and double press the button on tha back
of the board (tha part that does not have a display). The Neopixel LED should start flashing green.

Double pressing the button on the back will put the board into DFU mode. This will display connect to your computer a
USB drive called BOOT. Copy and paste the downloaded UF2 file to this drive. This will flash CircuitPython to the board.

Offline WyliodrinSTUDIO

Connect the board to your computer using the USB cable. Run Wyliodrin STUDIO and open the Connect menu.
You should have an option called Adafruit Industries or Adafruit CLUE. Select that board. A popup with some
options will appear, just use the default options and click Connect.

You should be connected to the board.

Web WyliodrinSTUDIO

Note

Using the web version requires Google Chrome with some epxerimental features enabled

To use the Adafruit CLUE in the web version, you will have to use Google Chrome and enable Experimental Features.

To enable Experimental Features in Google Chrome, follow the steps:

	In the Chrome search bar write chrome: // flags

	Search the search bar for the flags: #enable-experimental-web-platform-features

	Set the ENABLE flag for Experimental Web Platform features

	At the bottom right click RELAUNCH button

	Restart the browser

After enabeling Experimental Features, connect the board to your computer using the USB cable and click the Connect menu.
Select the MicroPython option. A popup will appear, you can safly use the default settings and click Connect. The browser will
ask you to select the serial port. Select the port that has the Adafruit word in its name.

You should be connected to the board.

 ESP 8266 (MicroPython)

ESP 8266 (MicroPython)

This will show how to set up a ESP8266 device.

[image: ../_images/esp8266_board.png]

Windows

1. Download Micropython firmware

Open a browser and type this link: https://micropython.org/download/esp8266/,
then go install the latest version (without opening it).

Suggestion: create a folder on your computer named “esp8266” or “micropython” and download it there.

[image: ../_images/mp_firmware.png]

2. Install NodeMCU PyFlasher and flashing Micropython on ESP8266

NodeMCU PyFlasher is a new GUI tool to flash NodeMCU based on esptool.py and wxPython. It is available for Windows and for macOS.
First, you have to connect the ESP8266 to your computer. Take the USB cable from the kit and Put the USB-C in one of your ports and then connect the micro-USB to the microcontroller.

Check this link install NodeMCU [https://github.com/marcelstoer/nodemcu-pyflasher/releases], scroll down to the executables. If you have Windows 10 choose the first one (NodeMCU-PyFlasher-4.0-x64.exe), if you have Windows 7 choose the second one (NodeMCU-PyFlasher-4.0-x86.exe).

After the installation will be completed, click on the NodeMCU PyFlasher .exe file and you should have a similar window:

[image: ../_images/nodeMCU_1.png]
First, you have to choose your serial port, in this case it is “COM4”, (the number after “COM” is based on the port that you chose) like in the image below.

If you want to check which port you chose go in the Open Start menu and type “Device Manager”, then check Ports section (the number after “COM” is based on the port that you chose).

Succeeding, you have to click on “Browse” and go to the folder where you installed Micropython and choose the .bin file. Next you should chose the “Baud rate” like in the image below:

[image: ../_images/nodeMCU_2.png]
If you encounter errors, you need to reduce the baud rate (for example 9600 or up down). “1115200” is the speed read by serial port

As final step, you have to click on the button “Flash NodeMCU”.

[image: ../_images/nodeMCU_3.png]
Congratulations, now you have Micropython on your ESP8266!

Linux

2.1 Install Python

First, you should check if you have python3 installed. For that open Terminal and type:

$ python3 –version

If the python version appears, you can skip the installation go to Verify PIP is installed. You might have a newer version of python

If you do not have python installed, you have to use this command:

$ sudo apt install python3

At the moment, you should have python3. In order to check if the installation is completed, type:

$ python3

Then try to code in python, like in the image below:

[image: ../_images/verify_python.png]
To exit python press Ctrl+Z.

Verify PIP is installed

Open Terminal and type :

$ pip3

If it is installed you should have a similar output :

[image: ../_images/verify_pip3.png]
But if it has not been installed, you have to use the commands:

$ sudo apt-get update

$ sudo apt-get install python-pip

$ sudo pip install –upgrade pip

Congratulations, now you have installed Python!

2.2 Download Micropython firmware

Open a browser and type this link: https://micropython.org/download/esp8266/,
then go install the latest version (without opening it).

Suggestion: create a folder on your computer named “esp8266” or “micropython” and download it there.

[image: ../_images/mp_firmware.png]

3. Flashing Micropython on ESP8266

Open Terminal and use the command:

$ pip3 install esptool

Then check the esptool installation by typing:

$ esptool

Connect the ESP8266 to your computer. Take the USB cable from the kit and Put the USB-C in one of your ports and then connect the micro-USB to the microcontroller.

Succeeding, go to the folder where you installed Micropython firmware. Use $ls command to list files and directories and $ cd to change the current working directory.

Type $ dmesg to see the port, you should have a similar output:

[image: ../_images/verify_dmesg.png]
In this case the port is ttyUSB0.

After, use the command:

$ esptool.py –port /dev/ttyUSB0 erase_flash

for erasing the flash memory on the board. Instead of ttyUSB0 you might have another port. You have to put the one that you have seen earlier.

Press the reset (RST) button from your ESP8266, then use the command:

$ esptool.py –port /dev/ttyUSB0 –baud 460800 write_flash –flash_size=detect 0 esp8266-20170108-v1.8.7.bin

Keep in mind to put the port that you used in the previous command and pay attention to the version of Micropython that you have installed. Instead of “esp8266-20170108-v1.8.7.bin” you might have another version. You must replace it in the command. If you encounter errors, you need to reduce the baud rate (for example 115200 or up down).

Next, connect to the serial console with command:

$ screen /dev/ttyUSB0 115200

“115200” is the speed read by serial port. To close it type Ctrl+D or Ctrl+a followed by Ctrl+\.

Congratulations, now you have Micropython on your ESP8266!

macOS

1. Download Micropython firmware

Open a browser and type this link: https://micropython.org/download/esp8266/,
then go install the latest version (without opening it).

Suggestion: create a folder on your computer named “esp8266” or “micropython” and download it there.

[image: ../_images/mp_firmware.png]

2. Install NodeMCU PyFlasher and flashing Micropython on ESP8266

NodeMCU PyFlasher is a new GUI tool to flash NodeMCU based on esptool.py and wxPython.

First, you have to connect the ESP8266 to your computer. Take the USB cable from the kit and Put the USB-C in one of your ports and then connect the micro-USB to the microcontroller.

Check this link install NodeMCU [https://github.com/marcelstoer/nodemcu-pyflasher/releases], if you have High Sierra. Scroll down to the executables and click on the third executable (NodeMCU-PyFlasher-4.0.dmg).

After the installation will be completed, click on the NodeMCU PyFlasher .exe file and you should have a similar window:

[image: ../_images/nodeMCU_mac.png]
First, you have to choose your serial port, in this case the port is: “/dev/cu.SLAB_USBtoUART”

Succeeding, you have to click on “Browse” and go to the folder where you installed Micropython and choose the .bin file. Next you should choose the Baud rate like in the image above

If you encounter errors, you need to reduce the baud rate (for example 1115200 or up down). “921600” is the speed read by serial port.

As final step, you have to click on the button “Flash NodeMCU”.

Congratulations, now you have Micropython on your ESP8266!

 General Architecture of Wyliodrin STUDIO

General Architecture of Wyliodrin STUDIO

Wyliodrin STUDIO consists of a series of plugins that we used to build the different parts of our application.

Basically, a plugin is a component of the program that will help you apply different features. Due to the fact that Wyliodrin Studio supports plugins, it enables customization, which means that you will be able contribute to the development and improvement of our application.

To design the user interface we chose the Vue framework [https://vuejs.org/v2/guide] and for data synchronization we used VueX [https://vuex.vuejs.org/] library, which is deeply integrated into Vue and exploits its reactivity.

Plugin architecture

Each plugin is a folder in the source/plugins.

In order to create your own plugin, you should open the folder that you cloned before with a source-code editor, like Visual Studio Code. After that, you will have to open the plugins folder, that represents the “storage center” for all the plugins and that is found inside the source folder. Here, in plugins, you will create a new folder, named after the plugin you’d like to add.

[image: _images/plugins.png]
We recommand for the plugin name to be lowercase, and the words separated by “.”
For example, we’ll create the my.new.plugin folder.

The main components that you’ll need to create for your plugin are:

	The data folder: contains a sub-directory, img, which can also include different folders that you’ll need in order to keep the images that you use inside your .vue files.

	The style folder: contains the .less files, where we apply the CSS design for the different vue-components.

	The translations folder: consists of the messages-ln.json files(ln=language abbreviation). More details regarding this subject can be found here.

	The views folder, optional, recommended only if you will create .vue files to design the user interface for your plugin. (For example, it can contain the file MyVueFile.vue)

	The package.json file, which contains an object with the primary details regarding your plugin:

	Property title

	Description

	Required / Optional

	Default value

	name

	the name of the plugin (“button.example”)

	required

	-

	version

	0.0.1

	required

	“0.0.1”

	main

	the main file of the plugin, that will be “index.js”

	required

	“index.js”

	plugin

	an object where we specify the characteristics of the plugin

	required

	-

The properties of the “plugin” component are:

	Property title

	Description

	Required / Optional

	Default value

	consumes

	we specify from which other plugins our plugin uses exported functions (required “workspace”)

	required

	[“workspace”]

	provides

	we specify if our plugin functions will be exported (“example_button”)

	optional

	[]

	target

	for which version of the program the plugin should be working: browser or electron

	required

	-

As an example, a package.json file should look like this:

{
 "name": "my.new.plugin",
 "version": "0.0.1",
 "main": "index.js",
 "private": false,
 "plugin": {
 "consumes": ["workspace"],
 "provides": ["my_new_plugin"],
 "target": ["browser", "electron"]
 }
}

	The index.js file, which will be your main file.

Here, you can import all the .vue files that you need to register.

For example, if you previously create some Vue components to design the user interface, the first line in your index.js could look like that:

import MyVueFile from './views/MyVueFile.vue';

After that, you’ll need to instantiate an object that can be empty, or that can contain different functions that you’ll use.

The most important component of this file is the setup function that has to be exported, its purpose being to register your plugin and to make it functional inside the application.

export function setup(options, imports, register)
{
 /* Collect the functions exported by the consumed plugins */
 studio = imports;

 /* Here goes your code */

 register(null, {});

}

At the end, the folder should look like this:

[image: _images/folder.png]

Dependencies

We are using the webpack module to process the Wyliodrin STUDIO application. If you’re not familiarized with webpack, you should consult the theory presented in their documentation [https://webpack.js.org/concepts/], in order to understand which are the core concepts and how the modules that we use are mapped into the “dependency graph”.

As you probably read before, there are 2 different options to build the code, depending on the version that you are using:

	Standalone

npx webpack

	Browser

npx webpack --config=webpack.browser.config.js

Once the code was built, a folder named “build” is created. Its content represents the distribution code, which means a “minimized and optimized output of our build process that will eventually be loaded”. More details can also be found here [https://webpack.js.org/guides/getting-started/].

To pack (or “bundle”) a dependency, we need to install the module locally. These dependencies are copied in the build folder, but they are not available yet for the browser version of Wyliodrin STUDIO.

npm install archiver --save

We also created the devDependencies option, which allow to some particular dependencies to work not only for the electron edition, but also for the browser one. They are saved in the main package.json file of the program, as devDependencies property, and they are installed using the command:

npm install highcharts --save-dev

Imports

Each plugin exports in its main file “index.js” a setup function, designed to register the plugin. The structure of this function is:

export function setup(options, imports, register)
{
 /* the function code */
}

As you can see, one of the parameters of this function is imports.

The imports object has as purpose to collect all the functions and dependencies from the other plugins that our plugin consumes.

For example, let’s suppose that you have a plugin called “test.plugin”, which depends on the “workspace” and “projects” plugins. This means that the content of its package.json file will be:

{
 "name": "test.plugin",
 "version": "0.0.1",
 "main": "index.js",
 "private": false,
 "plugin": {
 "consumes": ["workspace", "projects"],
 "provides": [],
 "target": ["electron", "browser"]
 }
}

The fact that your plugin consumes these 2 plugins means that the imports object will include all their modules and will allow you to access all their functions. Therefore, your setup function from the “index.js” file could look like this:

let studio = null;

export function setup (options, imports, register)
{
 studio = imports;

 /* use the registerTab function from the workspace plugin */
 studio.workspace.registerTab('TEST_TAB', 100, TestTab, {
 visible ()
 {
 /* use the getCurrentProject function from the projects plugin to make
 the tab visible only if there is a project opened */

 return !!studio.projects.getCurrentProject();
 }
 });
}

Provides

As it was specified in this section, “provides” is a property assigned to the “plugin” property in the package.json file of each plugin. The idea around this property is to indicate if a plugin will export its own functions and modules to be used by other plugins.

For example, let’s assume that you have the same plugin, “test.plugin”, which doesn’t provide anything. This means that all its functions will be private and no other plugin will pe able to use them, not even if it specifies that it “consumes” your plugin.

In this case, the package.json file of your plugin will look like this:

{
 "name": "test.plugin",
 "version": "0.0.1",
 "main": "index.js",
 "private": true,
 "plugin": {
 "consumes": [],
 "provides": [],
 "target": ["electron", "browser"]
 }
}

And the index.js file will look like this:

export function setup (options, imports, register)
{
 studio = imports;

 /*Here goes your code*/
 register (null, {});
}

But if you want for your plugin to provide all its functions so that the others plugins may access and use them, you have to indicate this option inside the “provides” property. You should be careful at the fact that the provided object should not contain and “.” in its name, unlike the plugin name.

Therefore, the content of the package.json should be:

{
 "name": "test.plugin",
 "version": "0.0.1",
 "main": "index.js",
 "private": true,
 "plugin": {
 "consumes": [],
 "provides": ["test_plugin"],
 "target": ["electron", "browser"]
 }
}

As you can see, your “test.plugin” provides the “test_plugin” object, which means that if another plugin it’s using its functions, it should consume the same “test_plugin” object.

In this situation, the index.js file will have the following structure:

export function setup (options, imports, register)
{
 studio = imports;

 /* Here goes your code*/

 register (null, {
 test_plugin: test_plugin
 });
}

Architecture Components

Toolbar Buttons

The toolbar is a component located at the top of the window, on which you can add multiple elements.

[image: _images/toolbar.png]
The toolbar buttons are created using the registerToolbarButton function. One of the functionalities added in the toolbar using this function is the Projects Library, which opens a dialog where the user can manage his applications.

[image: _images/registerToolbarButton.png]

You can learn more about this component here.

Tabs

[image: _images/tabs.png]
The tabs are the main components of the workspace, created using the registerTab function. They offer the possibility to write and test the code for programming an IoT device, display sensors data, import Frietzing schematics or access the connected device directly through the shell.

The existing tabs at the moment are: Application, Dashboard, Notebook, Schematics, Pin Layout and Shell.

You can find more details about the tabs in this section.

Menu

The Menu is an element created on the toolbar component, represented by the following icon:

[image: _images/menu.png]
When clicked, it opens a menu containing different elements that help the user learn more about Wyliodrin STUDIO, send his feedback or switch to the advanced mode.

The components of the menu are:

[image: _images/menuitems.png]
A better presentation of the menu component and the menu items can be found in this section.

Connection Button

In the workspace plugin we added the connection button, which was designed inside the DeviceTools.vue component. It is visible only when there is no device connected to Wyliodrin Studio.

[image: _images/connectionbutton.png]
On click, it calls the showConnectionSelectionDialog and it opens a dialog where the user can see all the available devices. By clicking on a device, he will be asked to input the technical specifications and the login credentials, in order to connect and enable the device functionalities. When the connection was successfully completed, the device status will change from DISCONNECTED to CONNECTED.

DeviceTool Buttons

These buttons are visible only when a device is connected, because they will replace the Connection Button, and they can be different according to the device type.

We added them in the DeviceTools.vue component, and this is how they look like:

[image: _images/devicetoolbuttons.png]
A better description of this component can be found here.

Status Buttons

[image: _images/registerStatusButton.png]
The Status Buttons are created with the registerStatusButton function. They are used to open the console or the mqtt server.

The Console button opens a console similar to the shell.

The MQTT button opens an interface where you can choose the port where the MQTT server will be opened (publish-subscribe-based messaging protocol).

You can learn more about the status buttons here.

 Extension methods

Extension methods

Wyliodrin STUDIO enables customization, which means that you may add plugins to extend its features. Plugins may register different components, like buttons specifically designed for devices, workspace tabs, status buttons, toolbar buttons or menus.

Here is a list of plugins of this type, registered at this moment in Wyliodrin STUDIO:

Menu

The menu button is included in the Menu.vue component, as a simple image button.

[image: _images/menu.png]
If clicked, it opens a help menu including some topics registered using the registerMenuItem function.

	
registerMenuItem(name, priority, action, options)

	This function will register a new item in the menu that is displayed in the top left corner of the window.
A menu item is a component that will allow the “analysis” of Wyliodrin STUDIO, the purpose of the menu being to include details about
the application and its operation.

Each item has a name, that will be displayed in the menu, a priority, which refers to the position of an element in the list
of menu items, an action, representing the content that will be opened when the item is selected, and aditional options, that will
authorize or will block the user access, depending on their value.

The default value of these options is () => return true, which means the menu item will be visible and will allow user access,
but it can be customized at the moment of the registration of one element.

If the value of enabled will be changed to another function, the name of the menu item will still be visible in the list of all menu items, but
it won’t permit any user action, because the item will not become usable until the return value of the function will be true.

If the value of the visible option is changed to another function, the name of the menu item will not appear in the list with all menu items
until the return value of the function will become true; in this case, when the element is visible, it becomes automatically enabled.

	Arguments

	
	name (string) – the name/id of the menu item

	priority (number) – the priority of the tab, lower is to the left

	action (function) – the function to run when clicked

	options (Object) – additional options, like visible or enabled; the tab is available for user interaction according to the value of these options

	Returns

	disposable – - an item that may be disposed

Examples:

registerMenuItem('WYLIODRIN_API', 10, () => documentation.openDocumentation());

The items currently registered in the menu are:

Wyliodrin API: opens a new window with the API documentation

Resistor color code: dialog with the color code of a resistor

Send feedback: dialog where you can write a feedback, having a printscreen attached

Use Advanced/Simple Mode: switch between the simple and advanced (more functionalities included) mode.

About: dialog with a short description of the application

[image: _images/menuitems.png]

Toolbar Buttons

These buttons are located in the toolbar, on the top of the main window. A toolbar button is an element that will perform different actions when clicked, according to the component that is relied to it. For example, these buttons may open dialogs that require user inputs.

In order to create this type of buttons, we implemented the registerToolbarButton function:

	
registerToolbarButton(name, priority, action, iconURL, options)

	This function will register a new button in the toolbar.

Each toolbar button has a translatable name, that will be displayed under it on mouse hover, a priority, which refers to the position of
an element in the toolbar buttons list, an action, representing the content that will be opened when the button is selected, an icon that will
represent the actual symbol of the button and on which the user will be able to click, and aditional options, that will authorize or will
block the user access, depending on their value.

The default value of these options is () => return true, which means the toolbar button will be visible and will allow user access,
but it can be customized at the moment of the registration of one element.

If the value of enabled will be changed to another function, the name of the toolbar button will still be visible in the list of all toolbar buttons, but
it won’t permit any user action, because the button will not become usable until the return value of the function will be true.

If the value of the visible option is changed to another function, the name of the toolbar button will not appear in the list with all toolbar buttons
until the return value of the function will become true; in this case, when the element is visible, it becomes automatically enabled.

	Arguments

	
	name (string) – the name/id of the toolbar button

	priority (number) – the priority of the tab, lower is to the left

	action (function) – the function to run when clicked

	iconURL (string) – the relative path to the image assigned

	options (Object) – additional options, like visible or enabled; the button is available for user interaction according to the value of these options

	Returns

	disposable – - an item that may be disposed

Examples:

let time = new Date();

registerToolbarButton('TOOLBAR_BUTTON', 10, () => showNotification('You created a toolbar button!'), 'plugins/projects/projects/data/img/icons/button.svg', {
 visible() {
 return time.getHours() > 8;
 }
});

we register a button having the translation key ‘TOOLBAR_BUTTON’, the priority 10, that on click will pop up a notification with the content: “You created a toolbar button”. We need to specify the relative path to the image related to the button.

This function also modifies the default value of the visible additional options, making the button visible for the user only after 8 AM.

[image: _images/registerToolbarButton.png]

Tabs

The tabs are components of our application and accomplish various functions that help you handling your projects and interacting with the device that is connected to Wyliodrin STUDIO.

They are integrated with the registerTab function:

	
registerTab(name, priority, component, options)

	This function will register a new tab in the workspace.

Each tab has a title, that will be displayed in the workspace, a priority, which refers to the position of a tab in the list
of tabs, a component, representing the actual content and funtionality of the tab, and aditional options, that will authorize
or will block the user access, depending on their value.

The default value of these options is () => return true, which means the menu item will be visible and will allow user access,
but it can be customized at the moment of the registration of one element.

If the value of enabled will be changed to another function, the name of the menu item will still be visible in the list of all menu items, but
it won’t permit any user action, because the item will not become usable until the return value of the function will be true.

If the value of the visible option is changed to another function, the name of the menu item will not appear in the list with all menu items
until the return value of the function will become true; in this case, when the element is visible, it becomes automatically enabled.

	Arguments

	
	name (string) – the translation ID of the title of the tab

	priority (number) – the priority of the tab, lower is to the left

	component (Vue) – the Vue component to display

	options (options) – additional options, like visible or enabled; the tab is available for user interaction according to the value of these options;

	Returns

	disposable – an item that may be disposed {disposable()}

Examples:

let time = new Date();

registerTab('PROJECT_NOTEBOOK', 300, Notebook, {
 enabled () {
 return time.getHours() > 8;
 }
});

A list of the currently existing tabs:

[image: _images/all_tabs.png]

The tabs are registered in the workspace plugin. They can be accessed only if their “enabled” property is true, which means that you have to validate a certain condition: have an opened project or be connected to a device.

DeviceTool Buttons

These buttons are visible only when a device is connected and they can be different according to the device type.

We added them in the DeviceTools.vue component, and this is how they look like:

[image: _images/devicetoolbuttons.png]
They were previously registered using the registerDeviceToolButton function:

	
registerDeviceToolButton(deviceType, name, priority, action, iconURL, options)

	This function is used to register a new device tool button, specific for every device type.

For example, when a Raspberry Pi board is connected, the following buttons become available:
Run, Stop, TaskManager, PackageManager, NetworkManager.

Each device button require a deviceType, to know for which type of device we are registering the customized button,
it has a translatable name, that will be displayed under it on mouse hover, a priority, which refers to the position of
an element in the device buttons list, an action, representing the content that will be opened when the button is selected, an icon that will
be the actual symbol of the button and on which the user will be able to click, and aditional
options, that will authorize or will block the user access, depending on their value.

The default value of these options is () => return true, which means the device button will be visible and will allow user access,
but it can be customized at the moment of the registration of one element.

If the value of enabled will be changed to another function, the name of the device button will still be visible in the list of all device buttons, but
it won’t permit any user action, because the button will not become usable until the return value of the function will be true.

If the value of the visible option is changed to another function, the name of the device button will not appear in the list with all device buttons
until the return value of the function will become true; in this case, when the element is visible, it becomes automatically enabled.

	Arguments

	
	deviceType (string) – the device driver type the button is for

	name (string) – the name/id of the menu item

	priority (number) – the priority of the tab, lower is to the left

	action (function) – the function to run when clicked

	iconURL (string) – the relative path to the image assigned

	options (Object) – additional options, like visible or enabled; the button is available for user interaction according to the value of these options

	Returns

	disposable – - an item that may be disposed

Examples:

let time = new Date();

registerDeviceToolBotton('RUN', 10, => showNotification('You clicked the Run button!'),
 'plugins/studio/workspace/data/img/icons/button.svg', {
 visible() {
 return time.getHours() > 8;
 }
});

Here, we registered a device tool button having the translation key ‘DEVICETOOL_BUTTON’, the priority 10, that on click will pop up a notification with the content: “You created a device tool button!”.

The button will be visible for an user only after 8 AM.

Status Buttons

The last component of the workspace is represented by the status buttons: Console and MQTT. A status button is an element that will perform different actions when clicked, according to the component that is relied to it. For example, these buttons may open terminals or interfaces that require user inputs.

They are created using the registerStatusButton function.

[image: _images/registerStatusButton.png]

	
registerStatusButton(name, priority, component, iconURL, options)

	This function will register a new button in the status bar that is displayed in the bottom of the window.

Each status button has a translatable name, that will be displayed under it on mouse hover, a priority, which refers to the position of
an element in the status buttons list, a component, representing the content that will be shown when the button is clicked, an icon that will
represent the actual symbol of the button and on which the user will be able to click, and aditional options, that will authorize or will
block the user access, depending on their value.

The default value of these options is () => return true, which means the status button will be visible and will allow user access,
but it can be customized at the moment of the registration of one element.

If the value of enabled will be changed to another function, the name of the status button will still be visible in the list of all status buttons, but
it won’t permit any user action, because the button will not become usable until the return value of the function will be true.

If the value of the visible option is changed to another function, the name of the status button will not appear in the list with all status buttons
until the return value of the function will become true; in this case, when the element is visible, it becomes automatically enabled.

The statusButtons registered at the moment can open the Console and
the Mqtt server interface.

	Arguments

	
	name (string) – the name/id of the menu item

	priority (number) – the priority of the tab, lower is to the left

	component (Vue) – the Vue component to display

	iconURL (string) – the relative path to the image assigned

	options (Object) – additional options, like visible or enabled; the button is available for user interaction according to the value of these options

	Returns

	disposable – - an item that may be disposed

Examples:

registerStatusButton('CONSOLE', 1, Console, 'plugins/studio/console/data/img/icons/terminal-icon.svg');

The Console button opens a console similar to the shell, while the MQTT button opens an interface where you can choose the port where the MQTT server will be opened (the default port is 1883). MQTT is a publish-subscribe-based messaging protocol.

Language

The language button is included in the LanguageMenu.vue component and its corresponding image, a flag, changes dynamically according to the selected language.

[image: _images/language.png]
Here’s a list with all the languages available at this moment:

[image: _images/all_languages.png]
When a language is selected from the list, the setLanguage function is called, which is using the internationalization (i18n) [https://en.wikipedia.org/wiki/Internationalization_and_localization] process, and the new language is updated, meaning that all the keys will be translated. More details about the translation function are discussed here.

 Deploy Application

Deploy Application

Broadly speaking, software deployment consists of all the porcesses required for preparing the a software application to run and operate in a specific environment.
It involves installation, configuration, testing and making changes to optimize the performance of the software. In Wyliodrin Studio, deploying an application
basically means to put it into production, after its prototype is finished and tested.

For the moment Wyliodrin Studio provides support just for Docker. The application will be deployed in a container, which is a standard unit of software that
packages up code and all its dependencies so the application runs quickly and reliably. In this way the app will be able to start automatically and run in the background.

This feature contains two main parts.

Deploy an Application

Start a deployment

To deploy a project you have to use the Deploy button.

[image: ../_images/deployButton.png]
After pressing it, the Dockerfile pop-up will appear.

[image: ../_images/dockerfilePopup.png]
This means that you do not have any dockerfile in the folder of your project. You now have the posibility to create a dockerfile through Wyliodrin Studio,
or to make one of your own.

Setup the deployment

You will be able to customize your dockerfile in the Deployment Settings pop-up.

[image: ../_images/dockerSettingsPopup.png]
In this dialog, you have multiple options to customize you dockerfile.
The process options are:

	Interactive

	the container is running in the foreground and has the console attached

	Service

	the container is running in detached mode

The restart options are:

	Do not restart

	do not automatically restart the container when it exits

	Always

	restart the container always, regardless of the exit status

	On failure

	restart the container only when it exits with a non-zero status

	Unless stopped

	always restart the container, except if it was put into stopped state before the Docker daemon was stopped.

The network options are:

	Private

	use docker’s default networking setup

	Same as device

	use the host’s network stack inside the container

Other options are:

	Remove container at exit

	automatically clean up the container and remove the file system when the container exits

	Priviledged container

	give extended privileges and acces to all devices to the container

As you can see, there are already some default options set. However, you can always change them or add other options that you need in the Additional Options field.

By doing these actions, you succesfully deployed your project in a container. This container has the same name as your project and can be found in the Deployments
pop-up.

Manage Deployments

Wyliodrin STUDIO allows you to manage your deployed apps. By pressing the Deployments button you can manage both your containers created
in Wyliodrin Studio, and the ones created locally on your machine.

[image: ../_images/deploymentsButton.png]
After pressing this button you will be shown a list of all the containers.

[image: ../_images/deploymentsPopup.png]
In the list you will find two types of containers. The ones with the Wyliodrin Studio logo are the one created inside the application, whilst
the ones with the docker icon are created locally. You may also see in which state the container can be found in that particular moment, as well as delete or
stop the containers.

 Wyliodrin Studio API

Wyliodrin Studio API

Workspace plugin API

“Workspace” is the main plugin in our application. It exports the “workspace” object, containing a series of functions that we use in every other plugin.

Data Types

	
class Device()

	Device Identification

	Arguments

	
	id (String) – unique id for the device (determined by the driver)

	name (String) – name of the device

	type (String) – type of the device (the device type id that reported the device)

	
disposable()

	a function that is called when the item may be deleted

Tabs

	
registerTab(name, priority, component, options)

	This function will register a new tab in the workspace.

Each tab has a title, that will be displayed in the workspace, a priority, which refers to the position of a tab in the list
of tabs, a component, representing the actual content and funtionality of the tab, and aditional options, that will authorize
or will block the user access, depending on their value.

The default value of these options is () => return true, which means the menu item will be visible and will allow user access,
but it can be customized at the moment of the registration of one element.

If the value of enabled will be changed to another function, the name of the menu item will still be visible in the list of all menu items, but
it won’t permit any user action, because the item will not become usable until the return value of the function will be true.

If the value of the visible option is changed to another function, the name of the menu item will not appear in the list with all menu items
until the return value of the function will become true; in this case, when the element is visible, it becomes automatically enabled.

	Arguments

	
	name (string) – the translation ID of the title of the tab

	priority (number) – the priority of the tab, lower is to the left

	component (Vue) – the Vue component to display

	options (options) – additional options, like visible or enabled; the tab is available for user interaction according to the value of these options;

	Returns

	disposable – an item that may be disposed {disposable()}

Examples:

let time = new Date();

registerTab('PROJECT_NOTEBOOK', 300, Notebook, {
 enabled () {
 return time.getHours() > 8;
 }
});

In this example, the Notebook tab will be enabled and will allow user access only after 8AM. Until then, it will appear in the list of tabs as it follows:

[image: _images/disabledTab.png]

	
registerMenuItem(name, priority, action, options)

	This function will register a new item in the menu that is displayed in the top left corner of the window.
A menu item is a component that will allow the “analysis” of Wyliodrin STUDIO, the purpose of the menu being to include details about
the application and its operation.

Each item has a name, that will be displayed in the menu, a priority, which refers to the position of an element in the list
of menu items, an action, representing the content that will be opened when the item is selected, and aditional options, that will
authorize or will block the user access, depending on their value.

The default value of these options is () => return true, which means the menu item will be visible and will allow user access,
but it can be customized at the moment of the registration of one element.

If the value of enabled will be changed to another function, the name of the menu item will still be visible in the list of all menu items, but
it won’t permit any user action, because the item will not become usable until the return value of the function will be true.

If the value of the visible option is changed to another function, the name of the menu item will not appear in the list with all menu items
until the return value of the function will become true; in this case, when the element is visible, it becomes automatically enabled.

	Arguments

	
	name (string) – the name/id of the menu item

	priority (number) – the priority of the tab, lower is to the left

	action (function) – the function to run when clicked

	options (Object) – additional options, like visible or enabled; the tab is available for user interaction according to the value of these options

	Returns

	disposable – - an item that may be disposed

Examples:

registerMenuItem('WYLIODRIN_API', 10, () => documentation.openDocumentation());

In this example, the Wyliodrin API menu element will open a new documentation window when clicked.

	
renameMenuItem(prevName, actualName)

	Rename an item from the menu.

The previous parameters that were set for the current menu item will remain unchanged,
but the name of the element will be updated in the list of menu items.

	Arguments

	
	prevName (string) – the initial name of the item

	actualName (string) – the actual name of the item

	Returns

	disposable – - an item that may be disposed

Examples:

renameMenuItem('WYLIODRIN_API', 'WYLIODRIN_STUDIO_API');

	
registerDeviceToolButton(deviceType, name, priority, action, iconURL, options)

	This function is used to register a new device tool button, specific for every device type.

For example, when a Raspberry Pi board is connected, the following buttons become available:
Run, Stop, TaskManager, PackageManager, NetworkManager.

Each device button require a deviceType, to know for which type of device we are registering the customized button,
it has a translatable name, that will be displayed under it on mouse hover, a priority, which refers to the position of
an element in the device buttons list, an action, representing the content that will be opened when the button is selected, an icon that will
be the actual symbol of the button and on which the user will be able to click, and aditional
options, that will authorize or will block the user access, depending on their value.

The default value of these options is () => return true, which means the device button will be visible and will allow user access,
but it can be customized at the moment of the registration of one element.

If the value of enabled will be changed to another function, the name of the device button will still be visible in the list of all device buttons, but
it won’t permit any user action, because the button will not become usable until the return value of the function will be true.

If the value of the visible option is changed to another function, the name of the device button will not appear in the list with all device buttons
until the return value of the function will become true; in this case, when the element is visible, it becomes automatically enabled.

	Arguments

	
	deviceType (string) – the device driver type the button is for

	name (string) – the name/id of the menu item

	priority (number) – the priority of the tab, lower is to the left

	action (function) – the function to run when clicked

	iconURL (string) – the relative path to the image assigned

	options (Object) – additional options, like visible or enabled; the button is available for user interaction according to the value of these options

	Returns

	disposable – - an item that may be disposed

Examples:

let time = new Date();

registerDeviceToolBotton('RUN', 10, => showNotification('You clicked the Run button!'),
 'plugins/studio/workspace/data/img/icons/button.svg', {
 visible() {
 return time.getHours() > 8;
 }
});

This example creates a characteristic device button called ‘Run’, that will display a notification when clicked. Because of the visible option, the button will appear in the list of all tool buttons only after 8AM.

Status Bar

	
registerStatusButton(name, priority, component, iconURL, options)

	This function will register a new button in the status bar that is displayed in the bottom of the window.

Each status button has a translatable name, that will be displayed under it on mouse hover, a priority, which refers to the position of
an element in the status buttons list, a component, representing the content that will be shown when the button is clicked, an icon that will
represent the actual symbol of the button and on which the user will be able to click, and aditional options, that will authorize or will
block the user access, depending on their value.

The default value of these options is () => return true, which means the status button will be visible and will allow user access,
but it can be customized at the moment of the registration of one element.

If the value of enabled will be changed to another function, the name of the status button will still be visible in the list of all status buttons, but
it won’t permit any user action, because the button will not become usable until the return value of the function will be true.

If the value of the visible option is changed to another function, the name of the status button will not appear in the list with all status buttons
until the return value of the function will become true; in this case, when the element is visible, it becomes automatically enabled.

The statusButtons registered at the moment can open the Console and
the Mqtt server interface.

	Arguments

	
	name (string) – the name/id of the menu item

	priority (number) – the priority of the tab, lower is to the left

	component (Vue) – the Vue component to display

	iconURL (string) – the relative path to the image assigned

	options (Object) – additional options, like visible or enabled; the button is available for user interaction according to the value of these options

	Returns

	disposable – - an item that may be disposed

Examples:

registerStatusButton('CONSOLE', 1, Console, 'plugins/studio/console/data/img/icons/terminal-icon.svg');

In this example, a new status button is created. The Console component has to be previously created as a Vue component and imported in the index.js file where the new status button is registered:

import Console from './views/Console.vue';

	
openStatusButton(name)

	Open a status button, using the dispatchToStore function to send to
the activeStatusButton variable from the workspace store the value
of the chosen status button.

	Arguments

	
	name (string) – the name of the status button to open

Examples:

openStatusButton('CONSOLE');

	
closeStatusButton()

	Close a status button, using the dispatchToStore function to send to
the activeStatusButton variable from the workspace store an empty string,
which means that the currently open status button is no longer available.

Examples:

closeStatusButton();

Data Store

	
registerStore(namespace, store)

	This function registers a new namespaced store.

A “store” is basically a container that holds the application state.
Since a Vuex store is reactive, when a Vue component needs or changes
a variable state, it will reactively and efficiently update the values.

	Arguments

	
	namespace (string) – the name/id of the menu item

	store (Object) – the actual store object, imported from the ‘store.js’ file of the plugin

	Returns

	undefined –

Examples:

registerStore('projects', projectStore);

	
getFromStore(namespace, variable)

	Gets the value of a variable from a selected store.

	Arguments

	
	namespace (string) – the name of the store where the variable is registered

	variable (string) – the name of the variable to process

Examples:

let project = getFromStore('projects', 'currentProject');

	
dispatchToStore(namespace, action, data)

	Sends data to a selected store promptly and updates the state and value of a certain variable.

	Arguments

	
	namespace (string) – the name of the store where the data will be dispatched

	action (string) – the variable to be updated

	data (Object) – additional data to send to the variable

Examples:

dispatchToStore('projects', 'currentProject', null);

Vue

	
registerComponent(component)

	Register a Vue component.

	Arguments

	
	component (Vue) – the Vue component to be registered

Examples:

registerComponent(MyComponent);

	
setWorkspaceTitle()

	This function sets the title of the workspace according to the name of the current project.

The workspace title will be displayed to the left of the tabs list.

Examples:

setWorkspaceTitle (project.name);

Device Drivers

	
registerDeviceDriver(name, deviceDriver)

	This function registers a new device type. It requires a name that indicates the type of the device
for which it will register the driver, and the actual device driver object, that include a series of properties
and functions.

	Arguments

	
	name (string) – device type name

	deviceDriver (DeviceDriver) – actual device driver, consists of a series of functions necessary to represent, connect, disconnect or set up a device.

Examples:

registerDeviceDriver('my_device', deviceDriver);

	
updateDevices(type, dev)

	This function updates the list of devices for a device type. It’s required to know
the type of the device that will be updated, and the list wilth all the devices that will
be attached to the selected type of device.

	Arguments

	
	type (string) – device type, has to be registered

	dev (Array.<Device>) – a list of devices (Device())

Examples:

updateDevices (myDevices);

	
connect(device, options)

	The purpose of this function is to connect Wyliodrin STUDIO to a device.

In order to connect, it’s required to have a valid device object and the corresponding
connection options. This process demands to constantly check the device status.

The statuses that a device can have are:

DISCONNECTED - this is offline

CONNECTING - trying to connect

SYNCHRONIZING - trying to synchronize with the device

CONNECTED - this is online

ISSUE - there is some issue, the system is partially functional

ERROR - there is an error with the system

	Arguments

	
	device (Device) – the device to connect to

	options (Device) – connect options

	
getDevice()

	Returns a device from the store.

This function has no parameters and it’s using the getFromStore function,
which returns a device object, with all its properties. It’s useful to work with it each
time you want to manipulate the currently connected device and you need to know its type.

Examples:

let device = getDevice ();

	
getStatus()

	This function returns the status of a device.

The function has no parameters and calls the getFromStore function, which returns
from the workspace store a string representing the current status of the device
the user tries to work with.

Examples:

let status = getStatus();

	
disconnect()

	This function disconnects the currently connected device from Wyliodrin STUDIO, which means
that it deletes the connections and characteristics of this device, as reported by the type
of disconnection that the user chooses:

StandBy -

Disconnect -

Turn Off -

	
showConnectionSelectionDialog()

	This function opens a customized dialog box, used to select a device that will be connected to Wyliodrin Studio.

It’s called when the user clicks on the ‘Connect’ button and it shows a dialog containing a list with all the devices available for connection.

Projects plugin API

The “projects” plugin is the second most important component in our application. Same as “workspace”, it has its own store, where we register the applications the user creates, in order to manage properly his activity.

Data Types

	
class Project()

	Project Identification

	Arguments

	
	date (string) – date and time of the last time the project was accsesed

	folder (string) – absolute path to the project

	language (string) – programming language of the project

	name (string) – the actual name of the project

	
class Language()

	Programming Language Identification

	Arguments

	
	addons (object) – the specific features of the language // language addons

	icon (string) – path to the language image

	id (string) – language name

	fileIcons (array) – array of language specific fileIcons

	options (Object) – language functions

	
class file()

	File Identification

	Arguments

	
	file (string) – extension if it’s a file

	children (Array.<file>) – children if it’s a folder

	path (string) – path to object

	name (string) – name of object

	
disposable()

	a function that is called when the item may be deleted

Programming Languages

	
projects.getLanguage(languageID)

	This function returns a programming language object with the following properties: id, title, icons, addons and options.

It requires the unique id that identifies the language in the list of all programming languages.

	Arguments

	
	languageID (string) – the id of said language

	Returns

	Language – - programming language properties

	
registerLanguage(id, title, projectIcon, logoIcon, fileTreeIcon, fileIcons, options)

	This function registers a language object by updating the list of all languages with a new programming language having its
own specifications and functions.

Every new language has an id, its unique identifier, a title, which is the actual
name of the programming language, a characteristic icon, and its own options required
in order to be working properly.

The accepted languages are: javascript, python, bash and visual.

	Arguments

	
	id (string) – language id

	title (string) – language title

	projectIcon (string) – icon that appears in the projects library

	logoIcon (string) – icon that appears in the new application popup

	fileTreeIcon (string) – icon that appears at the top of the file tree

	fileIcons (string) – icons for files

	options (Object) – language options

Examples:

registerLanguage('python', 'Python', 'plugins/languages/python/data/img/project_python.png', 'plugins/languages/python/data/img/python.png', python);

In this example, the las parameter, python is an object previously created, its properties being the characteristic functions for this programming language.

	
registerLanguageAddon(language, types, boards, options)

	This function is used to add an addon to an already existing language. In this case, an addon refers to a
specific feature that can be set for a board.

Each addon requires the programming language unique id, the type of the board for which the feature
will be set, the type of the actual addon, and the additional functioning options of the feature.

	Arguments

	
	language (Object) – language id

	types (string|Array.<string>) – addon type

	boards (string|Array.<string>) – addon board

	options (Object) – addon options

	Returns

	boolean – - true if successful, false otherwise

	
registerEditor(name, languages, component, options)

	This function registers a new type of editor.

The editor has a name, which is a translatable string that will be dispayed as the
title of the editor, languages, which represent the array with all the supported programming languages id’s
or file extensions, and a Vue component, representing the actual content and design of the editor tab.

	Arguments

	
	name (string) – the name/id of the editor

	languages (Array.<string>) – the editor languages

	component (Vue) – the component to display

	options (array) – the editor options

	Returns

	boolean – - true if successful, false otherwise

Examples:

registerEditor('EDITOR_ACE',['py','js'], Ace);

This is an example of how you can register an Ace editor that will accept python(py) and javascript(js) programming languages. The Ace component will be designed as a Vue component for the editor and imported inside the main file where the new editor is registered.

	
languageSpecificOption(project, option)

	This function returns a specific option that was set to a programming language.

In order to obtain it, is required to have the project for which the option was set
and the actual name of the specific option.

	Arguments

	
	project (Project) – project object

	option (string) – option

	Returns

	Object – the specific option of the programming language

Examples:

let sourceLanguage = languageSpecificOption (project, {...});

Projects

	
createEmptyProject(name, language)

	This function creates a new empty project.

Each project requires a name, that will be entered by the user as a text in
the input area, and a programming language that the project will use,
also chosen by the user.

	Arguments

	
	name (string) – Project name

	language (string) – Project language

	Returns

	Project – - Project object

Examples:

project = createEmptyProject('MyProject', 'py')

	
deleteProject(project)

	This function deletes all the files related to the project chosen by the user, when he clicks on the “Delete” button.

After removing all the files, the currentProject and currentFile are dispatched to the projects store as null.

	Arguments

	
	project (Project) – Project object

	Returns

	boolean – true if succsesful, false otherwise

Examples:

deleteProject('MyProject');

	
renameProject(project, newName)

	This function renames a selected project, when the user clicks on the Rename button.

It’s required to know the project that will be renamed and the new name, that will
be entered by the user in the input text area.

	Arguments

	
	project (Project) – Project object

	newName (string) – New project name

	Returns

	boolean – true if succsesful, false otherwise

Examples:

renameProject('MyProject', 'MyRenamedProject');

	
cloneProject(project, newName)

	This function is used to clone a project, by creating a duplicate of the selected project and
assigning to it the “newName” value, chosen by the user.

	Arguments

	
	project (Project) – Project object

	newName (string) – Cloned project name

	Returns

	boolean – true if succsesful, false otherwise

Examples:

cloneProject(project, 'MyClonedProject');

	
importProject(project, data, extension)

	This function imports a project archive.

Loads a new project tree from the user’s computer. The archive extension can be “.zip”, “.tar”
(in this case the files will be extracted), or ‘.wylioapp” (we are creating recursively the project folder).

	Arguments

	
	project (Project) – project object

	data (Project) – data from project

	extension (string) – archive extension (.zip/.tar/.wylioapp)

	Returns

	boolean – true if succsesful, false otherwise

Examples:

importProject(project, projectData, '.zip');

	
recursiveCreating(necesarry)

	Recursively generate the project tree structure with paths and names

necesarry.item - file item

necessary.item.isdir - is or not directory

necessary.item.children - only if it’s a directory

necessary.item.name - name

necessary.item.content - file content only if it’s a file

	Arguments

	
	necesarry (Object) – Object representing the details about every file withing the project

	Returns

	boolean – true if succsesful, false otherwise

	
exportProject(project)

	This function exports a project archive.

It’s required to know the project that the user will export, including all of its files and folders,
and the path to where the project will be saved in the user’s computer. The archive will have
the .zip extension.

	Arguments

	
	project (Project) – project object

Examples:

exportProject(project);

	
recursiveGeneration(project, file)

	Recursively generate a deep object with all the contents of a project

	Arguments

	
	project (Project) – Project object

	file (file) – File object

	Returns

	file – the root of the folder with all its contents

	
loadProjects()

	Load existing projects.

This function has no parameters. It creates a list with all the existing projects when it’s called, by reading all the
folders from the main path, workspacePath.

	Returns

	Array.<Project> – - a list of projects

Examples:

let projects = loadProjects();

	
selectCurrentProject(project)

	This function selects a project from the list with all the projects, when the users clicks on it,
and it displays the content of the project in the Application tab.

	Arguments

	
	project (Project) – project object

	Returns

	boolean – true if succsesful, false otherwise

	
loadPreviousSelectedCurrentProject()

	Load a previous selected project.
The function has no params, loads the project from local files.

Examples:

let project = loadPreviousSelectedCurrentProject();

	
generateStructure(project, isRoot)

	This function generates the tree structure of a project.

	Arguments

	
	project (Project) – project object

	isRoot (boolean) – true

	Returns

	file – - the tree structure

	
getCurrentProject()

	Get the current project structure.

The getFromStore function is called to load the content of the currentProject variable from the projects store.

	Returns

	Project – project object

Files and Folders

	
newFile(project, name, data)

	This function creates a new file inside a project. For this, it is required that we know
the project for which the new file is generated, the name that the file
will have (actually represented by the absolute path to where the
file will be created), and, if necessary, the information that will be written in the file.

This option is valid only in the Advanced Mode.

	Arguments

	
	project (Project) – project object

	name (string) – path to where to create the file

	data (string) – data to be written to file

	Returns

	boolean – true if succsesful, false otherwise

Examples:

newFile(project, '/main.js', 'console.log(\'Hello from JavaScript\');');

	
deleteFile(project, pathTo)

	This function is used to delete a file from a project, and it needs the project containing the selected
file and the path to that file.

	Arguments

	
	project (Project) – project object

	pathTo (string) – path to the file

	Returns

	boolean – true if succsesful, false otherwise

Examples:

deleteFile(project, '/folder/file');

	
saveFile(project, name, buffer)

	The purpose of this function is to save a file. It requires the project in which the file resides,
the name of the file, actually represented as the path to the file, and a buffer containing the data that
will be saved in the created file.

	Arguments

	
	project (Project) – project object

	name (string) – path to file

	buffer (string) – file buffer to be saved

	Returns

	boolean – - true if successful, false otherwise

Examples:

saveFile(project, '/folder/file', Buffer.from ('...'));

	
loadFile(project, name)

	This function loads the content of a file that was previously saved. In order to
open the file, it’s needed to know the project that the file belongs to, and the
full name of the file, meaning its path.

	Arguments

	
	project (Project) – project object

	name (string) – full file name with path

	Returns

	Object – - file content

Examples:

let fileContent = loadFile(project, 'FileName');

	
changeFile(project, name)

	Changes the current file to another one.

	Arguments

	
	project (Project) – project object

	name (string) – path to file

	
saveSpecialFile(project, name, content)

	The purpose of this function is to save a special settings file and it requires the project corresponding to the file,
the name of the file, actually represented as the path to the file, and the content that will be saved in the special
settings file.

	Arguments

	
	project (Project) – project object

	name (string) – the path to the file

	content (Buffer) – the content of the file

	Returns

	boolean – - true if successful, false otherwise

Examples:

saveSpecialFile(project, 'SpecialFileName', Buffer.from ('...'));

	
loadSpecialFile(project, name)

	This function loads the content of a special settings file that was previously saved. In order to
open the file, it’s needed to know the project that the file belongs to, and the
full name of the file, meaning its path.

	Arguments

	
	project (Project) – project object

	name (string) – the path to the file

	Returns

	Buffer – - the content of the special settings file, null otherwise

Examples:

loadSpecialFile('MyNewProject', 'SpecialFileName');

	
getDefaultFileName(project)

	The purpose of this function is to obtain the default file name of a project.

Usually, the name of this file is ‘main.ext’, where ext is the extension
corresponding to the programming language that defines the project.

	Arguments

	
	project (Project) – project object

	Returns

	string – - name of the default file

	
getDefaultRunFileName(project)

	Get the default run file name of a project.

Usually, the name of this file is ‘main.ext’, where ext is the extension
corresponding to the programming language that defines the project.

	Arguments

	
	project (Project) – project object

	Returns

	string – - name of the default run file

	
getMakefile(project)

	This function’s purpose is to get the makefile for file name of a project.

	Arguments

	
	project (Project) – project object

	Returns

	string – - name of the makefile

	
getFileCode(project, path)

	This functions returns the code that was written into a file and it needs
the project where the file is saved and the path to the file.

	Arguments

	
	project (Project) – project object

	path (string) – the path to the file

	Returns

	Object – - the current file code

	
getCurrentFileCode()

	Similar to the one defined before, this function also returns the code, but this time
from the current file that is opened in the current project.

	Returns

	Object – - the current file code

	
newFolder(project, name)

	This function creates a new folder inside a project. For this, it is required that we know
the project for which the new folder is generated and the name that the folder
will have. The name is actually represented by the absolute path to where the
folder will be created.

This option is valid only in the Advanced Mode.

	Arguments

	
	project (Project) – Project object

	name (string) – path to where to create the folder

	Returns

	boolean – true if succsesful, false otherwise

Examples:

newFolder(project, '/folder/folder2');

	
deleteFolder(project, pathTo)

	This function is used to delete a folder from a project, and it needs the project containing the selected
folder and the path to that folder.

	Arguments

	
	project (Project) – project object

	pathTo (string) – path to the folder

	Returns

	boolean – true if succsesful, false otherwise

Examples:

deleteFolder(project, '/folder/folder2');

	
renameObject(project, newName, pathTo)

	This function is used to rename a file or a folder included in the currently open project.

It’s required to know the project for which the change is made, the new name that will
correspond to the selected object and the path to the file/folder to be renamed.

Available only for the Advanced Mode, this function is called when the user choses the Rename option in the menu that shows
up by right clicking on a folder/file.

	Arguments

	
	project (Project) – project object

	newName (string) – new name

	pathTo (string) – path to existing file/folder

	Returns

	boolean – true if succsesful, false otherwise

Examples:

renameObject(project, 'ObjectNewName', '/folder/file');

Dashboard Graphs Plugins

The purpose of the dashboard plugins is to create a collection of graphs that update their values according to the signals received from a connected device.

The main plugin, “dashboard”, designs the Dashboard tab, which contains the list with the graphs that the user can draw, but it also serves as a store, where the states and values of the graphs are managed.

Inside the index.js file, we created the registerGraph function, that registers a graph component, with its data, options and settings, and constantly updates the graphs array in the dashboard store. The parameters of this function are:

	Parameter title

	Description

	name

	graph label, translatable string

	priority

	graph priority in the list of all graphs, lower means higher in the list of all graphs

	iconURL

	the relative path to the image representing the graph

	component

	the Vue component to display when the user chooses to draw a graph

	options

	additional options

Also here we create the functions registerForSignal and emitSignal, that will be used by the graphs and the connected device.

Here’s a list of the graphs that are currently available in the application: Gauge, Line, Speedometer, Thermometer, Vumeter, Switch, Slider, Extra.

Each dashboard graph represents a new plugin, named “dashboard.graph.name”, where name represents the actual name of the graph.

The views folder contains 2 Vue components:

	NameDialog.vue, where we design the dialog opened when the user clicks on one graph from the list, allowing to customize the options and settings

	NameGraph.vue, where we use the vue2-highcharts module to draw a graph, according to the data entered by the user in the dialog; more details about the available Highcharts and the parameters required for each chart can be found here [https://www.highcharts.com/].

The index.js file of each graph has the purpose to call the registerGraph function from the main plugin dashboard, where the component parameter is the NameGraph Vue component, and the options parameter is represented by on object where we define the setup property. Here, we call a function that opens the NameDialog component and updates each graph’s setup options according to the data inputted by the user.

Of course, in the package.json file we have to specify that each dashboard.graph plugin consumes the main dashboard plugin.

Pin Layout plugin

The Pin Layout tab becomes visible for a user only when a board is connected to Wyliodrin STUDIO, and it loads a “map” of the board and a legend of its pins. As we described in the How to add a wyapp board section, when we register this type of device, we call the registerPinLayout function.

	
registerPinLayout(type, board, img)

	This function registers a customized pin layout image for the connected device.
It’s called each time you create a plugin for a new type of board. Depending on
the type of the device or on the name of the board, the purpose of this function
is to display the specified image within the Pin Layout tab.

	Arguments

	
	type (string) – device type

	board (string) – board name

	img (string) – path to the pin layout image

For example, if you want to register a Raspberry Pi board, inside the corresponding plugin you will call this function:

studio.pin_layout.registerPinLayout ('wyapp', 'raspberrypi', 'plugins/devices/wyapp/devices/raspberrypi/data/img/pins-raspberrypi.png');

In this situation, the program will search for a device that has the ‘wyapp’ type, and the name of the corresponding board ‘raspberrypi’.

However, you can register a pin layout only for a device type, and the selected image will be available for every device that has that type, no matter the name of the board:

studio.pin_layout.registerPinLayout ('wyapp', '', 'plugins/devices/wyapp/devices/raspberrypi/data/img/pins-raspberrypi.png');

Once a Raspberry Pi board is connected to Wyliodrin STUDIO, the Pin Layout tab will become available, and its content will be:

[image: _images/pinlayout.png]
The Vue component of this plugin, PinLayout.vue, is designed to change the pin layout image dynamically, according to the device type and board, and to become enabled/disabled, depending on the status of the device (CONNECTED / DISCONNECTED).

Console and Shell plugins

Both the Console and the Shell plugins depend on the xterm plugin.

The “xterm” plugin uses the xterm module in order to register a terminal that will allow the user to interact with a connected board.

The terminal has 2 implemented buttons:

	clear: clear the content of the terminal

	reset: reboot the terminal

Both functions belong to the xterm Terminal, that is initialized when a device is connected. If there is no connected device, the terminal won’t allow the user access and a replacement text will be displayed.

[image: _images/noconsole.png]
[image: _images/noshell.png]

The Xterm Terminal functioning is based on events.

The title of the terminal is applied when a device is connected and it changes dynamically, according to the type of the board. For example, if a Raspberry Pi board is connected, the title will be detected and automatically set to the terminal as pi@raspberrypi.

When the user starts typing commands in the terminal, the write function is called in order to save all the inputted data into a buffer, unique for each terminal. We also retain the cursor position, to write the characters successively.

Another event is to resize the terminal and it has to be done at each update. The resizing action supposes to set the geometry of the terminal (number of columns and rows).

Both console and shell plugins have the functionalities of the described Terminal, so they have to consume the xterm plugin. However, there is a certain difference between the 2 components:

The purpose of the Console is to display a terminal that allows you to see the output of the projects that you run in the Application tab.

[image: _images/console.png]

The Shell terminal represents the main component of the Shell tab, that allows you to send command directly to the board.

[image: _images/shellTerm.png]

Settings Plugin

The “settings” plugin consumes our filesystem plugin in order to save special files that contain various settings for our plugins. The filesystem is implemented differently for each version of the Wyliodrin STUDIO application, but the main idea is to manage all the files and folders used inside the program.

In order to obtain the data that was written into a special settings file, we need to read the content of this file located inside a special settings folder.

The main functions of the settings plugin are:

	
storeSettings(plugin, data)

	Save plugin settings.

For each plugin that this function is called for, we create an object with
the data that will be stored and we use the filesystem function writeFile to
save the parsed content into the SETTINGS_FILE

	Arguments

	
	plugin (string) – plugin name

	data (Object) – plugin data

	
loadSettings(plugin)

	Load plugin settings.

For the selected plugin, we display the data saved inside the special settings file.

	Arguments

	
	plugin (string) – plugin name

	Returns

	Object – - the data inside the settings file

	
loadValue(plugin, name, value)

	Load value from settings.

We first load the settings from a chosen plugin using the loadSettings function.
If the setting object exists and if there is a value for the chosen name property,
we return that value.

	Arguments

	
	plugin (string) – plugin name

	name (string) – property name

	value (Object) – the value to be associated to the property

	Returns

	string – - the value in the settings file

	
storeValue(plugin, name, value)

	Store value to settings.

The function first loads the existing settings of the selected project, then updates
the chosen property of the object with the value.

	Arguments

	
	plugin (string) – plugin name

	name (string) – property name

	value (Object) – the value to be associated to the property

 How to write a plugin

How to write a plugin

Simple plugin

In this section, we will try to create a new plugin, called “button.example”, that will add a toolbar button which will show a notification when is clicked.

The purpose of this tutorial is to help you to better understand the idea of plugin, the steps that you need to follow, the structure and behavior of each component file, as they were explained in the Architecture chapter.

The first step will be to create the button.example folder inside the plugins directory.

Each plugin contains 2 special folders:

The first one is the data folder, that has to be copied exactly as it is created in the build folder of the program. This data directory will include all the images used to represent the components of a plugin (tool buttons, icons), but also other aditionals files needed in order to make your plugin run properly.

The second special component is the translations folder, which will contain the translatable key strings from your plugin, and also their translations.

More details about how the translation function works can be found here.

Only to exemplify the content of this folder, we’ll create the messages-en.json (english language) and messages-fr.json (french language).

In our index.js file, you can notice that we used 2 strings having the following format: ‘PLUGIN_STRING_TO_TRANSLATE’, more precisely: ‘EXAMPLE_BUTTON_NAME’ and ‘EXAMPLE_BUTTON_NOTIFICATION_TEXT’. It means that this key-strings have to be included in both our translation files.

As you can see in the Translations chapter, the value that the key string will receive has to be an object with 2 properties: message (the actual translation), description (a short definition of the string to translate).

By the end, your messages-ln.json (ln = language) files should look like this:

“messages-en.json”:

{
 "EXAMPLE_BUTTTON_NAME": {
 "message": "Notify",
 "description": "This button pops-up a notification."
 },
 "EXAMPLE_BUTTON_NOTIFICATION_TEXT": {
 "messages": "You have successfully created your button!",
 "description": "This is the notification text when the user clicks the button."
 }
}

“messages-fr.json”:

{
 "EXAMPLE_BUTTTON_NAME": {
 "message": "Notifier",
 "description": "This button pops-up a notification."
 },
 "EXAMPLE_BUTTON_NOTIFICATION_TEXT": {
 "messages": "Vous avez créé le bouton avec succès",
 "description": "This is the notification text when the user clicks the button."
 }
}

Then, we’ll add the package.json file. As mentioned before, the content of this type of file has to be an object with the following properties:

	Property title

	Description

	Required / Optional

	Default value

	name

	the name of the plugin (“button.example”)

	required

	-

	version

	0.0.1

	required

	“0.0.1”

	main

	the main file of the plugin, that will be “index.js”

	required

	“index.js”

	plugin

	an object where we specify the characteristics of the plugin

	required

	-

The properties of the “plugin” component are:

	Property title

	Description

	Required / Optional

	Default value

	consumes

	we specify from which other plugins our plugin uses exported functions (required “workspace”)

	required

	[“workspace”]

	provides

	we specify if our plugin functions will be exported (“example_button”)

	optional

	[]

	target

	for which version of the program the plugin should be working: browser or electron

	required

	-

Finally, the content of our package.json will be:

{
 "name": "button.example",
 "version": "0.0.1",
 "main": "index.js",
 "private": false,
 "plugin": {
 "consumes": ["workspace"],
 "provides": ["button_example"],
 "target" : ["browser", "electron"]
 }
}

The next step is to create the main file, called index.js.

If you already read this section, you probably noticed that in the index.js file we should’ve imported first the .vue files from the views folder. In this plugin tutorial, we only register a simple button, which means that we don’t need a .vue file to design a specific Vue component, so the views folder will also be missing.

Therefore, we’ll only need to initiate a studio variable to null and to create an empty object called button example.

After that, we have to export a setup function, its parameters being:

	Property title

	Description

	Required / Optional

	Default value

	options

	additional options

	optional

	null

	imports

	all the functions that our plugin collects from the plugins that it consumes (in our case, the functions exported by workspace)

	required

	-

	register

	a function that will register the plugin object

	required

	-

Inside this function, the studio variable instantiated before will receive the imports value.

After that, we need to register our button, so we’ll call the worskpace function registerToolbarButton, which will have the following parameters:

	‘BUTTON_EXAMPLE_NAME’

	the name of our button, a key string that will be translated

	20

	integer number representing the priority of our button in the list of all toolbar buttons

	() => studio.workspace.showNotification

	the action that will be performed when the user clicks on this button

	‘plugins/button.example/data/img/button.png’

	the relative path to the image that will represent our button

The showNotification function is also called from the workspace and its parameters are:

	‘BUTTON_EXAMPLE_NOTIFICATION_TEXT’

	the key string that will be translated and will represent the text of our notification

	‘success’

	the notification type

By the end, our index.js file should look like this:

let studio = null;
let button_example = {};

export function setup(options, imports, register)
{
 /* Collect the objects exported by the consumed plugins */
 studio = imports;

 /* Create a toolbar button that will display a notification */
 studio.workspace.registerToolbarButton ('EXAMPLE_BUTTON_NAME', 20,
 () => studio.workspace.showNotification ('EXAMPLE_BUTTON_NOTIFICATION_TEXT'),
 'plugins/button.example/data/img/button.png');

 /* Register the object that this plugin will provide */
 register(null, {
 button_example: button_example;
 })
}

As you noticed above, when we registered the image corresponding to our button, we specified its relative path, which includes some additional folders in our button.example plugin.

To test if you successfully created your first plugin, you have to rebuild the program using the 2 commands for electron npx webpack, then npm start.

[image: _images/examplebutton.png]

[image: _images/exampleNotification.png]
If you want to test this plugin, you will have to search for “button.example” in the docs/examples folder and copy it inside the source/plugins folder, then rebuild the application to make the new plugin available.

How to create a device plugin

This type of plugin allows you to add and use a new device to the Wyliodrin STUDIO platform, so you need to properly register its functions and characteristics.

Let’s suppose that you want to create your own device plugin, called “device.awesome”.

The data folder should contain all the images that you need to represent the device (the icon displayed in the list of available devices) and its features (for example, the DeviceToolButtons), but also, if needed, the additional files that you’ll use to make your device run projects.

The views folder has to include every Vue component relied to your device, for example: disconnect, device settings or device manager dialogs.

For this example, we will create the AwesomeDisconnectDialog.vue component, that will contain the button that disconnects the device:

<template>
 <v-card class="disconnect">
 <v-tooltip>
 <template #activator="data">
 <v-btn @click.stop="disconnect" class="icon-btn" ref="reference">

 </v-btn>
 </template>
 {{$t('DEVICE_AWESOME_DISCONNECT')}}
 </v-tooltip>
 </v-card>
</template>

<script>
 /* The actual code goes here */
</script>

The script part will define the disconnect function and also an esc function, that will close the dialog containing the Disconnect Button when the user presses the ‘Esc’ key:

export default {
 name: 'AwesomeDisconnectDialog',
 methods: {
 disconnect ()
 {
 /* Send the 'disconnect' tag */
 this.$root.$emit ('submit', {
 disconnect: 'disconnect'
 });
 },
 esc()
 {
 /* Emit the 'submit' signal from the child component to notify the parent that the dialog has to be closed */
 this.$root.$emit('submit');
 }
 }
}

The package.json file will have the classic format, but if it’s necessary the “plugin” object will require an additional property, called “optional”, where you will specify if the plugin consumes the console or the mqtt plugins.

For the example created, it won’t be necessary, so the content of this file will be:

{
 "name": "device.awesome",
 "version": "0.0.1",
 "main": "index.js",
 "private": true,
 "plugin": {
 "consumes": ["workspace", "projects"],
 "provides": [],
 "target": ["electron"]
 }
}

The translations folder will also have the usual structure, including the messages-ln.json files with the unique keys that you used in your device plugin, for each language of the program.

{
 "DEVICE_AWESOME_DISCONNECT": {
 "message": "Disconnect",
 "description": "This button is used to disconnect a device."
 }
}

The main file index.js is the most important for this type of plugin, as its purpose is to include all the functions and characteristics that will make your device work.

You have to begin with importing all the Vue components that you created, and also all the modules and packages that your device requires in order to work properly.

For the “device_awesome” plugin, the header of this file could look like this:

/* Here you will import all the modules required for the functioning of your device */

import AwesomeDisconnectDialog from './views/AwesomeDisconnectDialog.vue';

import { EventEmitter } from 'events';
import { connect } from 'http2';

let deviceEvents = new EventEmitter ();

let awesome_module = null;

let studio = null;
let workspace = null;
let devices = [];

let awesomeDevices = [];

let connections = {};

After that, you will create the functions needed to search and update your device type:

loadDevice: uses a specialized module to scan the operating system of the client and search for your type of device.

function loadAwesome ()
{
 try
 {
 /* Any module that will allow you to find the type of device you have chosen */

 return require ('awesome_module');
 }
 catch (e)
 {
 studio.workspace.error ('device_awesome: Awesome is not available '+e.message);
 return {
 list: function ()
 {
 return [
];
 }
 };
 }
}

listDevice: will try to return a list of the available devices, if they can be found.

async function listAwesome ()
{
 let ports = [];
 try
 {
 ports = await awesome_module.list ();
 }
 catch (e)
 {
 studio.workspace.error ('device_awesome: failed to list awesome '+e.message);
 }
 return ports;
}

updateDevices: simply call the workspace updateDevices function.

function updateDevices()
{
 workspace.updateDevices ([...devices, ...awesomeDevices]);
}

searchDevices: checks systematically the list with all the available devices found, trying to find those having the name or the description fitting your type of device, then adds a new object to the devices array, with the relevant properties: unique id, name, description, address, priority, icon, type of board, type of connection, and others additional options.

function search ()
{
 if(!discoverAwesomeDevicesTimer)
 {
 discoverAwesomeDevicesTimer = setInterval (async () => {
 let awesome_devices = await listAwesome ();
 devices = [];
 for(let awesomeDevice of awesome_devices)
 {
 /* Search only for the devices that have the same specifications as your Awesome Device, array and set its properties.*/

 devices.push(awesomeDevice);
 }
 updateDevices ();
 },5000);
 }
}

Inside the setup function, you first have to obtain the list of devices that fit your awesome type:

export function setup (options, imports, register)
{
 studio = imports;
 awesome_module = loadAwesome();
 search();

 /* Code explained below */
}

After that, you will create the object you will register and export for your plugin, its properties being the functions that will help the user manage your device on the Wyliodrin Studio platform:

defaultIcon: correlates a default icon to a device that doesn’t have any particular image already attached

defaultIcon ()
{
 return 'plugins/device.awesome/data/img/icons/awesome.png';
}

registerForUpdade: registers to receive updates for a device

registerForUpdate (device, fn)
{
 deviceEvents.on ('update:'+device.id, fn);
 return () => deviceEvents.removeListener ('update:'+device.id, fn);
}

getConnections: returns the connections array for every unique device id

getConnections ()
{
 let connections = [];
 for (let deviceId in connections)
 {
 connections.push (connections[deviceId].device);
 }
 return connections;
}

connect: connects the device to Wyliodrin Studio; if there is no connection previously created for the current unique id of the device, you should create a data transport path conforming with the type of your device;

connect(device, options)
{
 /* Here goes the actual code that you will write in order to connect the device. */

 setTimeout(() => {
 device.status = 'CONNECTED';
 }, 1000);
}

after that, according to the current status, you will bring up to date your device, using the updateDevices function and you will set up its functioning characteristics.

The device statuses are:

	DISCONNECTED

	the device is offline

	CONNECTING

	trying to connect

	SYNCHRONIZING

	trying to synchronize with the device

	CONNECTED

	the device is online

	ISSUE

	there is some issue, the system is partially functional

	ERROR

	there is an error with the system

disconnect: opens a dialog where the user chooses the way he wants to disconnect the device; the methods of disconnection are:

	StandBy -

	Disconnect -

	Turn-Off -

disconnect(device, options)
{
 /* Here goes the actual code that you will write in order to connect the device. */
 setTimeout(() => {
 device.status = 'DISCONNECTED';
 }, 1000);
}

After creating the new device object, you have to register it using the workspace function registerDeviceDriver.

workspace = studio.workspace.registerDeviceDriver('awesome', device_awesome);

Here you can also generate the specific buttons for your type of device, using also an workspace function: registerDeviceToolButton.

For the awesome device we create a Run button, that will run the code written by the user in the current project.

workspace.registerDeviceToolButton('DEVICE_AWESOME_RUN', 10 async () => {
 let device = studio.workspace.getDevice ();

 /* Here goes the actual code that will make your device run a project */
 console.log('Run');
 }, 'plugins/device.awesome/data/img/icons/run-icon.svg',

 /* The aditional options that make the Run Button visible and enabled only if there is a connected device
 and its type is "awesome" */
 {
 visible () {
 let device = studio.workspace.getDevice ();
 return (device.status === 'CONNECTED' && device.connection === 'awesome');
 },
 enabled () {
 let device = studio.workspace.getDevice ();
 return (device.status === 'CONNECTED' && device.connection === 'awesome');
 },
 type: 'run'
 });

Also, if your device interacts with the console or the mqtt server, you will have to create some specific functions that will establish the data transfer protocol.

At the end of the setup function, we register the device_awesome object:

register(null, {
 device_awesome
});

If you want to test this plugin, you will have to search for “device.awesome” in the docs/examples folder and copy it inside the source/plugins folder, then rebuild the application to make the new plugin available.

How to add a wyapp board

If you’re trying to add a new board plugin, our “device.wyapp.raspberrypi”, “device.wyapp.beagleboneblack” and “device.wyapp.udooneo” plugins may serve as a support for you.

In the index.js file, inside the setup function, you need to create an event, so when the board is ‘ready’, you call the registerPinLayout function from our “pinlayout” plugin. The purpose of this function is to register the pins of your board in the Pin Layout tab, using the appropriate images that you saved in the data folder of our plugin.

For example, if we are connected to a Raspberry Pi, the content of the Pin Layout tab will be:

[image: _images/pinlayout.png]
The next step is to create an object having your new board name, with the next functions:

iconURL() => the image corresponding to your board

found(device) => if a device was found, you can modify some of its properties

update(device) => update a device, modify some of its properties

run(project) => modify the project before run

The final step is to register your board and, if it’s necessary, the blocks that you’ll use, from the “editor_visual” plugin.

For example, if you want to register a raspberry pi board, you should use this function:

registerBoard ('raspberrypi', raspberrypi);

How to write an editor plugin

The purpose of an editor plugin is to create a code editor, correlated to our “projects” plugin. The editor will allow the user to open different type of files created or imported within the tree structure of a project.

If you are creating an editor plugin, we recommend you to name the folder “projects.editor.”, followed by the name of your editor.

For example, in this tutorial we will create an awesome editor, that will display the content of the files having the .aws extension.

The first step is to create the package.json file, which will have the classic structure:

{
 "name": "projects.editor.awesome",
 "version": "0.0.1",
 "main": "index.js",
 "private": true,
 "plugin": {
 "consumes": ["workspace","projects"],
 "provides": [],
 "target": ["electron", "browser"]
 }
}

In this example, the editor will use functions only from the “workspace” and “projects” plugins, but you are free to “consume” any other plugin required by your editor.

After that, wi will add the views folder, where you will design the Vue components for your editor, in this example AwesomeEditor.vue.
In the template section, you will actually add the tags required by the code editor, while in the script part you will handle the functions that your editor will perform in order to display the content of the supported files.

<template>
 <!-- Here goes the design of your editor -->
</template>

/* <script> */

import path from 'path';

export default {
 name: 'AwesomeEditor',

 /* We pass the 'project' (path to the current project) and 'filename' (name of the opened file, including extension)
 in order to read the content of the file and handle it depending on the type of extension
 */
 props: ['project', 'filename'],
 data() {
 return {
 /* All the variables you will use in the template section */
 }
 },
 methods: {
 /* Code of all the function you will use in the template section */
 },
 watch:
 {
 filename:
 {
 immediate: true,
 async handler()
 {
 /* Full path to the current file */
 let filePath = path.join(this.project.folder, this.filename);

 /*Extension of the current file */
 let extension = this.filename.substring(this.filename.lastIndexOf('.')).substring(1);

 /* Get the content of the current file */

 let content = await this.studio.filesystem.readFile(filePath);

 /* Here goes the code for your file editor */

 }
 }
 }

}
/* </script> */

The final step is to create the index.js file, where you will register your editor. The structure of this file should look like this:

import AwesomeEditor from './views/AwesomeEditor.vue';

export default function setup (options, imports, register)
{
 const studio = imports;
 studio.projects.registerEditor('EDITOR_AWESOME',['aws'], AwesomeEditor);

 register (null, {});
}

The AwesomeEditor is registered using the registerEditor function:

	
registerEditor(name, languages, component, options)

	This function registers a new type of editor.

The editor has a name, which is a translatable string that will be dispayed as the
title of the editor, languages, which represent the array with all the supported programming languages id’s
or file extensions, and a Vue component, representing the actual content and design of the editor tab.

	Arguments

	
	name (string) – the name/id of the editor

	languages (Array.<string>) – the editor languages

	component (Vue) – the component to display

	options (array) – the editor options

	Returns

	boolean – - true if successful, false otherwise

Examples:

registerEditor('EDITOR_ACE',['py','js'], Ace);

How to write a language plugin

The purpose of this type of plugins is to register a new programming language that will be supported by the Wyliodrin Studio IDE.

For example, we’ll try to add a new programming language, called “MyAwesomeLanguage”, with the “.aws” extension:

As you can notice, the name of this type of plugins should begin with “language.”, which will be followed by the actual name of the programming language that you want to register, which means that you will have to create a new folder, “language.awesome”.

As any other plugin, it’s required to have a package.json file, having the classic format. It’s necessary to mention that this type of plugin consumes both “workspace” and “projects” plugins, and their target are both “electron” and “browser”.

So, the content of your package.json should look like that:

{
 "name": "language.awesome",
 "version": "0.0.1",
 "main": "index.js",
 "private": true,
 "plugin": {
 "consumes": ["workspace","projects"],
 "provides": [],
 "target": ["electron", "browser"]
 }
}

The language plugin doesn’t have any Vue component, so we don’t have to create the views folder, but we need the data folder to save a characteristic image for the programming language. Let’s pick as example for our language.awesome plugin, an icon that we will save in the data/img folder:

[image: _images/awesome.png]
Inside the main file, index.js, we obviously need to initialize the studio variable to null, and inside the setup function it will receive all the imported functions from the “workspace” and “projects” plugin.

The next step is to create the awesome object, containing the options of our programming language:

let studio = null;

export default function setup (options, imports, register)
{
 studio = imports;

 let awesome = {

 /* Create the main file of each project, "main.aws" */
 async createProject(name){
 await studio.projects.newFile(name,'/main.aws','print ("Hello from Awesome")');
 },

 /* Return the name of the default file */
 getDefaultFileName() {
 return '/main.aws';
 },

 /* Return the name of the default run file */
 getDefaultRunFileName() {
 return '/main.aws';
 },

 /* Return the content of the makefile */
 getMakefile(project, filename) {
 if (filename[0] === '/')
 filename = filename.substring (1);

 return 'run:\n\tawesome main.aws';
 },
 };
}

The next step is to register the new programming language, using the function registerLanguage:

studio.projects.registerLanguage('awesome', 'awesome', 'plugins/language.awesome/data/img/project.png', 'plugins/language.awesome/data/img/awesome.png', awesome);

where the last parameter represents the awesome object we created before.

If you want to test this plugin, you will have to search for “language.awesome” in the docs/examples folder and copy it inside the source/plugins folder, then rebuild the application to make the new plugin available.

How to add a language addon plugin

This type of plugin modifies the language plugin for certain devices. For instant, we are using it for visual and rpk. To design your own language addon, you will have to create a new plugin folder, called “language.visual.”, followed by the type of the device you want the language addon for.

For example, let’s say that you want to create an addon for your Awesome device and you need to create a new plugin, called language.visual.awesome

The first step is to create a new folder, visual, where you will add ……………… .js files.

You will also have to create a toolbox.xml file, where you will include the actual design of the blocks you want to be available for your device.

The index.js file will first import the xml module and the toolbox.xml file, the second one as a string, using the raw-loader module. More details about this webpack loader can be found here [https://github.com/webpack-contrib/raw-loader].

import xml from 'xml-js';
import toolboxStr from 'raw-loader!./visual/toolbox.xml';

Then, you will import the code and the blocks from the .js files included in the visual folder.

let blocks = require ('./visual/definitions_for_awesome.js');
let code = require ('./visual/code_for_awesome.js');

The setup function will register the changes you made for your device, using the projects function registerLanguageAddon.

let studio = null;
export function setup (options, imports, register)
{
 studio = imports;

 studio.projects.registerLanguageAddon ('visual', 'awesome', 'awesome', {
 getDefaultRunFileName ()
 {
 return '/main.visual.js';
 },

 sourceLanguage ()
 {
 return 'awesomelanguage';
 }
 });

 let toolbox = xml.xml2js (toolboxStr);
 studio.editor_visual.registerBlocksDefinitions ('awesome', blocks, code, toolbox, {type: 'awesome', board: 'awesome'});

 register (null, {});
}

As you can notice, the final step is to parse the toolbox string imported before and then to register the blocks using the registerBlocksDefinitions function from the projects.editor.visual plugin.

The parameters of this function are:

	Property title

	Description

	Required / Optional

	Default value

	id

	the id of the device

	required

	-

	blocks

	the blockly visual blocks

	required

	-

	code

	the blockly code

	required

	-

	toolbox

	the parsed toolbox string

	required

	-

	options

	additional options, an object where you can specify the device type and the board

	optional

	{}

Of course, you also need to have a package.json file, where you should mention that your language addon plugin also consumes “editor_visual”, because it’s using the registerBlockDefinitions function.

{
 "name": "language.visual.awesome",
 "version": "0.0.1",
 "main": "index.js",
 "private": true,
 "plugin": {
 "consumes": ["workspace","projects","editor_visual"],
 "provides": [],
 "target": ["electron"]
 }
}

If you want to test this plugin, you will have to search for “language.visual.awesome” in the docs/examples folder and copy it inside the source/plugins folder, then rebuild the application to make the new plugin available.

 Translations

Translations

Each plugin has a translations folder, where you can find the messages-ln.json files, one for each language available in our application. These files contain an object with a list of key-value sets.

In the .vue files you will use strings on different purposes (for example, to name a button) and you will need to update their translation according to the language you choose in the app. This action is possible using our translation function $t, that can be used in 2 forms:

1. Vue template

{{ $t('PLUGIN_STRING_TO_TRANSLATE') }}

where PLUGIN will be the name of your plugin and STRING_TO_TRANSLATE is a keyword for the actual text that you want to add.

2. Code

this.vue.$t(text)

where text is a parameter of a function (for example showNotification) that includes the translation function.

We use this.vue.$t(text) so the program knows to translate the parameter text, regardless of the value it receives.
When we call the showNotification function, text will also receive a keyword, for example:

showNotification('PLUGIN_STRING_TO_TRANSLATE');

In both situations, ‘PLUGIN_STRING_TO_TRANSLATE’ is a key that you will include in the messages-ln.json file, for each language. Its corresponding value is a new object, that contains a message (the translation itself) and a description.

For example, let’s say that in your message-en.json (English language) you want to translate the word ‘Close’, that will be attached to a button.

{
 "MYNEWPLUGIN_CLOSE": {
 "message": "Close",
 "description": "This button is used to close the current window."
 }
}

As you can imagine, in your messages-fr.json (French language), you’ll have:

{
 "MYNEWPLUGIN_CLOSE": {
 "message": "Fermer",
 "description": "This button is used to close the current window."
 }
}

Load and Send translation files

Inside the Wyliodrin Studio repository, you will find a directory named tools, which includes a translation sub-directory, with a translation.js main file. Here, you have 2 options to run this file:

node translation.js

This command joins all the key-value sets from all the existing plugins, for each language, into the messages-ln.json files from the current translation folder. It also checks for errors through all these files, using as reference file the english translation, and it lets you know if there are missing or duplicate keywords in a certain language.

node translation.js send

Compiling the code with the ‘send’ argument helps you split all the translations in a messages-ln.json file according to the plugin related to each key-value set. It also copies the description from the english translation and applies it to the corresponding keyword for every other language.

 Dialogs and Notifications

Dialogs and Notifications

In the “workspace” plugin you will find, additionally to the functions presented in the API sections, some functions designed to create and display some customized pop-ups, like dialogs, prompts and notifications.

Dialogs

A dialog is a component that informs users about a specific task and may contain important informations, require decisions, or involve multiple actions or inputs. It can usually be used to collect data from the user.

	
showDialog(title, component, options, buttons, values={})

	This function shows a dialog that can contain informations about an application component or that can require user actions.

The dialog will have a translatable title, displayed on the top of the box, a Vue component specifically designed
to collect the required data from the user, additional options and buttons to customize the dialog window, and the values option
that allow the translation of some system variables the user is working with.

	Arguments

	
	title (string|object) – the title of the dialog window

	component (Vue) – the Vue component to display

	options (Object) – additional like width

	buttons (Array.<Object>) – the array of buttons to display

	values (Object) – values to insert into the translatable text

For example, having the Simple plugin created, let’s say that when the button is clicked, you want to open a simple dialog with an input text area and a “Close” button. The content of the ButtonDialog.vue component will be:

<template>
 <v-card>
 <v-card-text>
 {{$t('BUTTON_EXAMPLE_INPUT_TEXT')}}
 <v-text-field></v-text-field>
 </v-card-text>

 <v-card-actions>
 <v-btn text @click="close">Close</v-btn>
 </v-card-actions>
 </v-card>
</template>

Inside the script section, you will define the methods that your component needs:

export default {
 name: 'ButtonDialog',
 data() {
 return {

 }
 },
 methods: {
 close() {
 this.$root.$emit ('submit', undefined);
 }
 }
}

The index.js file will have the following structure:

import ButtonDialog from './views/ButtonDialog.vue';

let studio = null;

export function setup(options, imports, register)
{
 studio = imports;

 /* Register a toolbar button that on click will reveal a dialog with the specified title, image and component */
 studio.workspace.registerToolbarButton ('BUTTON_EXAMPLE_NAME', 20,
 () => studio.workspace.showDialog ('BUTTON_EXAMPLE_DIALOG_TITLE', ButtonDialog),
 'plugins/button.example/data/img/button.png');

 register(null, {
 button_example: button_example
 });
}

The title parameter is not mandatory when you call the showDialog function, because you can choose the title of a dialog box within the Vue file that designs this component.

For example:

<template>
 <v-card>
 <v-card-title>
 {{ $t('BUTTON_EXAMPLE_DIALOG_TITLE') }}
 </v-card-title>

 <v-card-text>
 {{$t('BUTTON_EXAMPLE_INPUT_TEXT')}}
 <v-text-field></v-text-field>
 </v-card-text>

 <v-card-actions>
 <v-btn text @click="close">Close</v-btn>
 </v-card-actions>
 </v-card>
</template>

The script section will have the same structure as before, while within the index.js file you will have to register your button as it follows:

studio.workspace.registerToolbarButton ('BUTTON_EXAMPLE_NAME', 20,
 () => studio.workspace.showDialog (ButtonDialog),
 'plugins/button.example/data/img/button.png');

As you can notice, the showDialog function will use only the ButtonDialog component as parameter.

In both situations the result will be the same:

[image: _images/showDialog.png]

Prompts

A prompt is actually a dialog box that requires a user decision. A prompt box is often used if you want the user to input a value before entering a page, for example write a text or click on a button that will perform a certain action.

	
showPrompt(title, question, original, action, value={})

	This function shows a customized prompt that waits for user input and collects data.

A prompt has a title, that is located at the top of the box and it indicates the purpose of the prompt,
a question, representing the requirement addressed to users, an original value contained in the input
area, an action to be performed, and the values option that allow the translation of some system variables
the user is working with.

	Arguments

	
	title (string) – the translatable title of the prompt to be displayed

	question (string) – the translatable question of the prompt to be displayed

	original (string) – the original translatable content of the input area

	action (Object) – the action performed

	value (Object) – values to insert into the translatable text

Examples:

showPrompt('PROJECT_RENAME_PROJECT', 'PROJECT_NAME_PROMPT','');

This prompt is used to rename a project. The ‘PROJECT_RENAME_PROJECT’ is a translatable key string that corresponds to the title of the prompt (Rename Project) and ‘PROJECT_NAME_PROMPT’ represents the question or the statement addressed to the user (Please input the name of the project). Both key strings have to be included within the translations files.

The showPrompt function will return the value inputted by the user if he will click on OK and null otherwise, so that you can perform different actions depending on its answer.

[image: _images/showPrompt.png]

	
showConfirmationPrompt(title, question, values={})

	This function shows a customized prompt containing a simple question and waiting for a Yes/No response.

This prompt also has a title, that is located at the top of the box and it indicates the purpose of the prompt,
a question, addressed to users in order to confirm an action that will be performed, and the values option
that allow the translation of some system variables the user is working with.

	Arguments

	
	title (string) – the translatable title of the prompt to be displayed

	question (string) – the translatable question of the prompt to be displayed

	values (Object) – values to insert into the translatable text

Examples:

showConfirmationPrompt('EXIT', 'WORKSPACE_TOOLBAR_EXIT_QUESTION');

[image: _images/showConfirmationPrompt.png]

Notifications

The notifications are simple pop-ups that inform the user about unauthorized actions, required operations or system processes.

The possible types for a notification are: info, success, and warning, and each type has a distinct color.

	
showNotification(text, values={}, type, timeout=6000)

	This function shows a notification that will inform the user about the current application state.

The notification will have a text content, that will be translated according to the current language of the program,
but it can also contain the name of one system variable the user is working with. This variable is included in the values
object in order to be translated, because its value can change dynamically. Each notification also has a type, that will
update the color of the notification box, and a timeout to be visible for the user, its default value being 6 seconds.

	Arguments

	
	text (string) – the translatable ID of the text to be displayed

	values (Object) – values to insert into the translatable text

	type (string) – the notification type: info/success/warning

	timeout (number) – timeout until the notification is dismissed automatically (0 for never)

Examples:

studio.workspace.showNotification ('TRANSLATED_TEXT_ID', {title: 'the title'}, 'success', 5000);

[image: _images/showNotification.png]
In this situation, “title” is a variable that represents the title of the notification and will be included in the messages-ln.json translation files as it follows:

{
 "TRANSLATED_TEXT_ID": {
 "message": "The title of your workspace is: {title}",
 "description": "Text of the notification the user created."
 }
}

title will be the actual name of your workspace, in this example: Workspace Title.

	
showError(text, value={}, timeout=6000)

	This function sends an error notification in the application, when the user is trying to perform an
unauthorized action.

The error notification will have a text content, that will be translated according to the current language of the program,
but it can also contain the name of one system variable the user is working with. This variable is included in the values
object in order to be translated, because its value can change dynamically, and a timeout to be visible for the user, its
default value being 6 seconds.. In opposition to a basic notification, the default type is error.

	Arguments

	
	text (string) – the translatable ID of the text to be displayed

	value (Object) – values to insert into the translatable text

	timeout (number) – timeout until the notification is dismissed automatically (0 for never)

Examples:

studio.workspace.showError ('TRANSLATED_TEXT_ID', {title: 'the title'}, 5000);

[image: _images/showError.png]
Similar to showNotification, “title” is a variable that represents the title of the error notification and will be included in the messages-ln.json translation files as it follows:

{
 "TRANSLATED_TEXT_ID": {
 "message": "The device: {title} was unable to connect.",
 "description": "Text of the notification the user created."
 }
}

title will be the name of the device you are trying to connect, in this example: AwesomeDevice.

 Emulators

Emulators

	QEMU Based
	Install QEMU

	Raspberry Pi Emulator

 QEMU Based

QEMU Based

Install QEMU

The first step into running an emulator on your computer within Wyliodrin Studio is to install the right version of the QEMU machine emulator for your computer.

Install QEMU for Linux [https://www.qemu.org/download/#linux].

Install QEMU for Windows [https://www.qemu.org/download/#windows].

If your PC is running on Windows, you will have to add qemu in the PATH variable. In order to accomplish that, you will have to right click on This PC, select Properties, open the Environment Variables option, then edit the PATH variable. Here, you will have to add the absolute path to the folder where you chose to install qemu. The last step is to save the changes.

Install QEMU for mac OS [https://www.qemu.org/download/#macos].

Compile the QEMU source code [https://www.qemu.org/download/#source].

Raspberry Pi Emulator

[image: ../_images/raspberrypi_emulator.png]
Once you have the QEMU machine installed on your computer, you will be able to emulate a Raspberry Pi within Wyliodrin STUDIO. If you open the IDE, you will find the Emulator option between one of the items of the Menu.

If you don’t have any emulator previously created on your computer, the first tab will be automatically displayed in the prompt that will pop up. Here, you will be able to see a list with all the supported types of emulators.

[image: ../_images/emulator_availableImages.png]
If you don’t have any kernel image, you will have the option to download one previously configured by us. By clicking on the “Download image” button, a zip archive will be downloaded and unzipped in a special folder created on your computer. Once the download and decompression processes will be done, 2, new options will be available for the emulator.

As you can see in the picture shown above, you can either click on the “Delete image” button, that will permanently remove the kernel image from your computer, or on the “Create new emulator” button.

This last option will pop up a prompt where you will be asked to input the name of your emulator. You will have to enter a valid name, having at least one character, that has not been already used for another emulator. This action will start the boot process for your emulator, by copying the kernel image into a folder specifically created for the new emulator. In a few minutes, the Raspberry Pi emulator will show up on your computer.

By switching to the second tab of the Emulator prompt, you will see a list of all the available emulators that exist on your computer.

[image: ../_images/emulator_availableEmulators.png]
Here, for each available emulator, you will have 3 options:

	Stop Emulator - this button will kill the session for a chosen emulator, but your settings will be saved within the special folder.

	Restart Emulator - this button will be visible on each restart of Wyliodrin STUDIO or after each stop of an emulator. It will allow you to restart an emulator and to reload your changes and settings.

	Delete Emulator - this button will ask you if you really want to delete an emulator. By answering yes, the selected emulator will be permanently removed from your computer and you will lose all the saved data.

Connect to the emulator

Once the emulator completely loaded, you will be asked to input the default username and password, which are: pi / raspberry. After that, you will have to start the ssh session by typing: sudo systemctl ssh start

[image: ../_images/rpi_connect.png]
After that, you will be able to find your emulator in the Connection Menu and to connect to it.

 Simulators

Simulators

	RaspberryPi Simulator

 RaspberryPi Simulator

RaspberryPi Simulator

The RaspberryPi Simulator is a plugin used for the simulation of simple circuits using a RaspberriPi. It can simulate series circuits
made of leds, buttons and LCDs. The code to be runned on the RaspberryPi is written in the Application tab, and the only supported language is
NodeJS. So, the basic 2 components of this plugin is the project and the schema of the circuit.

Steps to use the RaspberryPi Simulator

You can use the RaspberryPi Simulator by following the next steps.

1. Connection

If you are connected to another device, disconnect from it. After that, press the CONNECT button in the headbar, and afterwards choose the
“RaspberryPi” that runs on the board raspberrypi_simulator. This simulates a connection to a phisical board.

[image: ../_images/deviceList.png]

2. RaspberryPi Simulator tab

After you connect to the RaspberryPi Simulator board, a new tab will appear on the right in the tab list, named RASPBERRY PI. This
tab has a structure of three components:

[image: ../_images/raspberryPiSimulatorTab.png]

	
	The button to open the list of examples

	It is located right under the tab list.
After you press the button, a list of examples will be opened on the left side.
At the top of the list will be a button LOAD SCHEMA used to load your own schema. We will discuss about that later.

[image: ../_images/examplesList.png]

	
	The circuit image

	It is located on the left side of the window.
The image is interactive, meaning that the leds can turn on, the buttons can pe pressed, and so on.

[image: ../_images/schematicExample.png]

	
	The table of connections

	It is located on the right side of the window.
Here you will see a simplified structure of the connections, so you can see which pins are connected in order to know how to use the components.

[image: ../_images/tableExample.png]

3. Load a project and run it

After you got accostumed to the RaspberryPi Simulator tab, you can load a project written in NodeJS. There are only 2 libraries available at
the moment, in order to control the GPIO pins on the RaspberryPi and the LCDs.

Afterwards, you can just press the RUN button and the code will start to execute. Also, the console remains active in the RaspberryPi Simulator tab,
so you can see the evolution of your code while interacting with the schema loaded.

Load your own schema

	The RaspberryPi Simulator plugin runs on schemas created with Fritzing. A schema has 2 components:

	
	the image of the circuit, saved in a SVG format

	the netlist with the connections, saved in a XML format

In order to create your own schema, you can follow the next steps.

1. Download and open Fritzing

You can access the Fritzing download page by clicking here [https://http://fritzing.org/download/]. After you download the application,
open it. You will see the below window.

[image: ../_images/fritzing.png]

2. Add components

After you open the app, you have to go to the Breadboard tab. From this tab you will export the files required for the schema, meaning the SVG image
and the XML netlist. On the right-top side you will see a window with components. From there you can search for the desired the components. The available
components that are recognized by the simulator are:

	RaspberryPi 3

	Pushbutton

	LED

	LCD 16x2

In order to place a component with just have to drag and drop it on the main panel from the Breadboard tab.

[image: ../_images/fritzingComponentList.png]

3. Make connections

After you’ve placed all the required components, you have to acces the Schematic tab. There you will see all components and you can make the connections
between them. After the connections are done, you have to go back on the Breadboard tab and make the phisical connections again. There will be dotted lines
that correspond to the connections from the Schematic tab. Also, you can edited the components from the window on the right-bottom. For example, you can change
the color of the led, or the color of the wire.

[image: ../_images/fritzingSchematicTab.png]
[image: ../_images/fritzingBreadboardTab.png]

4. Export from Fritzing

Attention! In order to export the files from the schema created, you have to be on the Breadboard tab.

	To export the required files for the schema, you have to follow 2 steps:

	
	export the SVG file: File -> Export -> as Image -> SVG…

	export the XML netlist: File -> Export -> XML Netlist…

You have to save the files on your computer in an easy accesible location, because you will need the afterwards.

5. Import to Wyliodrin STUDIO

	To import the files just created with Fritzing, you have to follow the next steps:

	
	access the RASPBERRY PI tab

	click on the button to open the list with examples

	press LOAD SCHEMA, and a pop-up will appear on your screen

	give a name to your schema if you want

	press ADD SVG FILE and choose your just-created SVG file

	press ADD XML NETLIST and choose your just-created XML netlist

	press UPLOAD

[image: ../_images/pop-up.png]
If all the steps are followed correctly, your schema should appear on the main view, along side with the table of connected components.

[image: ../_images/schemaJustCreated.png]

Libraries for RaspberryPi Simulator

In the RaspberryPi Simulator you can almost fully use two main libraries: onoff.GPIO and LCD. The usage of these libraries is
the same as the usage on phisical boards. The only difference is that not every function is available. Bellow you can see a list of
available function for the 2 libraries. To see more of the usage for these libraries you can access one of the links bellow:

	onoff [https://www.npmjs.com/package/onoff]

	LCD [https://www.npmjs.com/package/lcd]

	onoff.GPIO:

	
	create(pin, state) -> creates an object from which you can control the GPIO pins on the RaspberryPi. The state parameter is a string and it indicates the type for the pin input/output

	readSync() -> return the value readed by the pin 1/0

	writeSync(value) -> outputs on the GPIO pin the selected value 1/0

	direction() -> return the state of the pin

	setDirection(state) -> change the state of the pin

	activeLow() -> return the state of the activeLow property of the pin

	setActiveLow(value) -> change the activeLow property on the pin

	LCD:

	
	create(object) -> it creates an object in order to interact with the LCD. The object contains 4 properties: rs, e, data, cols, rows

	print(string) -> print the given string on the screen starting from the cursor current position

	clear() -> clears the LCD screen

	home() -> sets the cursor on the cell 0x0 on the LCD

	setCursor(row, col) -> sets the cursor on the row line and col column

	scrollDisplayLeft() -> scrolls the display one position tp the left

	scrollDisplayRight() -> scrolls the display one position tp the right

	close() -> close the connection with the LCD and free the assigned pins

Attention! LCD library only supports the 16x2 LCD!

Code examples

Bellow are 2 code examples on how to use the onoff.GPIO library and the LCD library.

onoff.GPIO example

The schematic associated to this code should have a led connected to GPIO4 pin on the RaspberryPi
and to the GND pin, and a button connected to the GPIO22 pin and to the 3V pin.

This program will wait 2 seconds, will turn the led on, the will wait another 2 seconds and
will turn it off. Afterwards, it will remain in the while loop while the button is not pressed.

var Gpio = require("onoff").Gpio;

var led = new Gpio(4, "out");
var button = new Gpio(22, "in");

sleep(2000);
led.writeSync(1);
sleep(2000);
led.writeSync(0);

while(button.readSync() === 0) {
 sleep(1000);
}

console.log("onoff.Gpio tutorial finished!");

LCD example

	The schematic associated to this code should have a LCD connected as it follows:

	
	VSS connected to the GND pin

	VDD connected to the 5V pin

	RS connected to the GPIO25 pin

	E connected to the GPIO2 pin

	DB4 connected to the GPIO23 pin

	DB5 connected to the GPIO17 pin

	DB6 connected to the GPIO18 pin

	DB7 connected to the GPIO22 pin

This program will write the “Hello world, from the LCD!” string on the LCD. Because it won’t fit, we will scroll
the display to the left for 10 times, and the we will clear the display. At the end, we close the
connection to the LCD.

var LCD = require("lcd");
var lcd = new LCD({rs: 25, e: 2, data: [23, 17, 18, 22], cols: 16, rows: 2})

lcd.print("Hello World, from the LCD!");

sleep(2000);

for (var i = 0; i < 10; i ++) {
 sleep(1000);
 lcd.scrollDisplayLeft();
}

sleep(1000);
lcd.clear();

lcd.close();

console.log("LCD tutorial finished!");

 Index

Index

 C
 | D
 | E
 | F
 | G
 | I
 | L
 | N
 | O
 | P
 | R
 | S
 | U

C

 	
 	changeFile() (built-in function)

 	cloneProject() (built-in function)

 	
 	closeStatusButton() (built-in function)

 	connect() (built-in function)

 	createEmptyProject() (built-in function)

D

 	
 	deleteFile() (built-in function)

 	deleteFolder() (built-in function)

 	deleteProject() (built-in function)

 	
 	Device() (class)

 	disconnect() (built-in function)

 	dispatchToStore() (built-in function)

 	disposable() (built-in function), [1]

E

 	
 	exportProject() (built-in function)

F

 	
 	file() (class)

G

 	
 	generateStructure() (built-in function)

 	getCurrentFileCode() (built-in function)

 	getCurrentProject() (built-in function)

 	getDefaultFileName() (built-in function)

 	getDefaultRunFileName() (built-in function)

 	
 	getDevice() (built-in function)

 	getFileCode() (built-in function)

 	getFromStore() (built-in function)

 	getMakefile() (built-in function)

 	getStatus() (built-in function)

I

 	
 	importProject() (built-in function)

L

 	
 	Language() (class)

 	languageSpecificOption() (built-in function)

 	loadFile() (built-in function)

 	loadPreviousSelectedCurrentProject() (built-in function)

 	
 	loadProjects() (built-in function)

 	loadSettings() (built-in function)

 	loadSpecialFile() (built-in function)

 	loadValue() (built-in function)

N

 	
 	newFile() (built-in function)

 	
 	newFolder() (built-in function)

O

 	
 	openStatusButton() (built-in function)

P

 	
 	Project() (class)

 	
 	projects.getLanguage() (projects method)

R

 	
 	recursiveCreating() (built-in function)

 	recursiveGeneration() (built-in function)

 	registerComponent() (built-in function)

 	registerDeviceDriver() (built-in function)

 	registerDeviceToolButton() (built-in function), [1]

 	registerEditor() (built-in function), [1]

 	registerLanguage() (built-in function)

 	registerLanguageAddon() (built-in function)

 	
 	registerMenuItem() (built-in function), [1]

 	registerPinLayout() (built-in function)

 	registerStatusButton() (built-in function), [1]

 	registerStore() (built-in function)

 	registerTab() (built-in function), [1]

 	registerToolbarButton() (built-in function)

 	renameMenuItem() (built-in function)

 	renameObject() (built-in function)

 	renameProject() (built-in function)

S

 	
 	saveFile() (built-in function)

 	saveSpecialFile() (built-in function)

 	selectCurrentProject() (built-in function)

 	setWorkspaceTitle() (built-in function)

 	showConfirmationPrompt() (built-in function)

 	showConnectionSelectionDialog() (built-in function)

 	
 	showDialog() (built-in function)

 	showError() (built-in function)

 	showNotification() (built-in function)

 	showPrompt() (built-in function)

 	storeSettings() (built-in function)

 	storeValue() (built-in function)

U

 	
 	updateDevices() (built-in function)

_images/awesome.png

_images/beagleboneblack.png

_images/all_languages.png
Deutsch

English

Espafiol

Frangais

Magyar

B#E

Roména

Slovensky

_images/all_tabs.png
APPLICATION

_images/deployButton.png
IN LAYOUT ~ SHELL

_images/deploymentsButton.png

_images/connectionbutton.png
CONNECT

_images/console.png
jsProject APPLICATION

1 .log('Hello from JavaScript') |

Hello from Javascript
Project exit with error 0

0

_images/deploymentsPopup.png
Deployments

o projectl
o test

& blissful_mclean

& focused benz

Exited (0) 5 minutes
ago

Exited (0) 6 hours ago

Exited (0) 3 minutes
ago

Exited (0) 58 seconds
ago

_images/deviceList.png
Select a device to connect to

% ‘Add Web Device IP Address @/ New RPK Device

RPK Simulator RaspberryPi Intel Corp.
i simuiator raspberypi_simulator

Intel Corp.
IdevityS4.

_images/devicemanager.png
v & Ports (COM &LPT)
ﬁ licon Labs Dual CP2105 USB to UART Bridge: Enhanced COM Port (COM9)
a Silicon Labs Dual CP2105 USB to UART Bridge: Standard COM Port (COM8)

nav.xhtml

 Table of Contents

 		
 Wyliodrin Studio documentation

 		
 Getting Started

 		
 Download the application

 		
 Use the web version

 		
 Build from source

 		
 Boards Setup

 		
 Raspberry Pi

 		
 Video

 		
 Download the pre-configured image

 		
 Set up the board manually

 		
 Connecting via web

 		
 Wyliolab Board

 		
 Set up wireless

 		
 Beaglebone Black

 		
 Download the pre-configured image

 		
 Set up the board manually

 		
 Connecting via web

 		
 Udoo Neo

 		
 Set up the board manually

 		
 Connecting via web

 		
 Pico-Pi

 		
 Download the pre-configured image

 		
 Set up the board manually

 		
 Connecting via web

 		
 Adafruit CLUE (CircuitPython)

 		
 Installing CircuitPython

 		
 Offline WyliodrinSTUDIO

 		
 Web WyliodrinSTUDIO

 		
 ESP 8266 (MicroPython)

 		
 Windows

 		
 Linux

 		
 macOS

 		
 General Architecture of Wyliodrin STUDIO

 		
 Plugin architecture

 		
 Dependencies

 		
 Imports

 		
 Provides

 		
 Architecture Components

 		
 Toolbar Buttons

 		
 Tabs

 		
 Menu

 		
 Connection Button

 		
 DeviceTool Buttons

 		
 Status Buttons

 		
 Extension methods

 		
 Menu

 		
 Toolbar Buttons

 		
 Tabs

 		
 DeviceTool Buttons

 		
 Status Buttons

 		
 Language

 		
 Deploy Application

 		
 Deploy an Application

 		
 Start a deployment

 		
 Setup the deployment

 		
 Manage Deployments

 		
 Wyliodrin Studio API

 		
 Workspace plugin API

 		
 Data Types

 		
 Tabs

 		
 Status Bar

 		
 Data Store

 		
 Vue

 		
 Device Drivers

 		
 Projects plugin API

 		
 Data Types

 		
 Programming Languages

 		
 Projects

 		
 Files and Folders

 		
 Dashboard Graphs Plugins

 		
 Pin Layout plugin

 		
 Console and Shell plugins

 		
 Settings Plugin

 		
 How to write a plugin

 		
 Simple plugin

 		
 How to create a device plugin

 		
 How to add a wyapp board

 		
 How to write an editor plugin

 		
 How to write a language plugin

 		
 How to add a language addon plugin

 		
 Translations

 		
 Load and Send translation files

 		
 Dialogs and Notifications

 		
 Dialogs

 		
 Prompts

 		
 Notifications

 		
 Emulators

 		
 QEMU Based

 		
 Install QEMU

 		
 Raspberry Pi Emulator

 		
 Simulators

 		
 RaspberryPi Simulator

 		
 Steps to use the RaspberryPi Simulator

 		
 Load your own schema

 		
 Libraries for RaspberryPi Simulator

 		
 Code examples

_images/disabledTab.png
APPLICATION

_images/dockerSettingsPopup.png
Deployment Settings

Process options Restart options
Interactive Do not restart

Remove container at exit

Network options
Private

Privileged container

Additional options

CLOSE

DEPLOY

_images/devices.png
I
v

_images/devicetoolbuttons.png
raspberrypi

192.168.1.199

>

&

1)

_images/emulator_availableImages.png
AVAILABLE IMAGES AVAILABLE EMULATORS

Create New Emulator Delete Image

Download Image

Close

_images/esp8266_board.png

_images/dockerfilePopup.png
Dockerfile

Dockerfile non-existent. Would you like a predefined one?

_images/emulator_availableEmulators.png
AVAILABLE IMAGES AVAILABLE EMULATORS

‘ Raspberry Pi Emulator 1 > i

Close

_images/exampleNotification.png
@ You have successfully created your button! €

_images/examplebutton.png

_images/examplesList.png
TUDIO | comeerss " e N

TestBadApp RASPBERRY PI

Y
1241

Pins Name Color

ow Im B 4 LED RED

feees

Lcd And 2 Butt...

Lcd And Button

_images/fritzingBreadboardTab.png
Flle Edit Part View Window Routing Help

§

ome natic c

= E®EE®E kR L)
EEEEEEE®EEE RN
Raspberry Pi 3 Model Bv1.2
© Raspberry Pi 2015

L]
@
.}
=
B

ko

Inspector

(DISPLAY)

DSI

=
o
z
=
[}
=

fid]
Share

_images/fritzingComponentList.png

_images/folder.png
~ my.new.plugin
v data
« img
i image.png
v style
) pluginless
v translations
1) messages-dejson
1) messages-enjson
1) messages-esjson
1) messages-frjson
1) messages-hujson
1) messagesjpjson
1) messages-rojson
1) messages-skjson
© views
'V MyVueFilevue
5 indexjs

) packagejson

_images/fritzing.png
Flle Edit Part View Window Help

Parts
Q coreParts

Breadboard A Schematic £ PCB <> Code

Recent sketches | Blog coe Basic

B Untitled Sketch.fzz EEEXI Fritzing Fab now powered by AISLER
Your trusty PCB production service s taking a big step! Effective today, Fab is powered by AISLER,
Feb. 21,2017 Andre

Finally, here's a fresh release of fritzing, coming with a nice set of new features. Head on over to.
Jun.3,2016 Andre

?, New fritzing release 0.9.3b!

New Book: "Fritzing for Inventors"
There are a zillion books that make use of Fritzing to illustrate circuits, but this one is the firs.

Dec. 6, 2015 André
=

EITMET A new fritzing discussion forum
‘The good old forum that has lasted us since 2009 has finally been replaced by a shiny new one. Ple.
Nov. 8, 2015 André

o5 New Fritzing version 0.9.2b released
E Hi everyone, here's a nice little Fritzing update! New Parts This one brings you a bunch of the la.
IO o 2015 Anore

D) New Sketch

S Open Sketch Fritzing News.

Inspector @ x
LED1

°
Q ¥ o

LDt

Tip of the Day:

Click on the mouse position
indicator in the status bar (at
the bottom) to toggle the units
from in to mm to px-
Fritzing Fab Placement

ocston 4537+ 0648 - In
Fritzing Fab Is an easy and affordable service for producing rotation
professional PCBs from your Fritzing sketches. e K G

produce your first pcb now >> Properties
fmly led

leg yes
current

color
package

part#

Tags

led, red led,indicator,fitzing core:
Connections

AlTps T order your pcs nov. IR

_images/languages.png
JavaScript Python Bash Shell Visual

e & ¢ B

_images/menu.png

_images/fritzingSchematicTab.png
Flle Edit Part View Window Routing Help

B Breadboard

Parts

Q [ouren

o
x

£ welcome

Raspberry
RPI-3-V1.2

GPI02 SDAT 12C GPI021

LED1 GPIO3 SCLT 12€ GPI020
Red (633nm) Raspberry Pi3 Grioic

Model Bv1.2 GPIO12

'; ID_SC 12C ID EEPROM
GPIO7 SPI0_CET_N
GIPO10 SPI0_MOST GPIO8 SPI0_CEO_N

GPIO9 SPI0_MISO GPIO25

ELIBER® D
R E e - W@
~t Il ed e @M .

GPIO11 SPI0_SCLK GPI024

BeE@O@mE wmE
mENO NDRI@

1D_SD 12 ID EEPROM GPI023

-

GPIOS GPIO18 PCM_CLK
GPIOS GPIO15 UARTO_RXD
GPI013 GPIO14 UARTO_TXD
GPI019
GPI026

Addanote Rotate Flip Autoroute

_images/language.png

_images/mp_firmware.png
Stable firmware, 2M or more of flash

e following fles e stabe e for e ESPE266. Program your board using €570l py rogram a5
descrbed i he ora.

Note: .13 o the frmuare has @ new ash flesyse layou, and uses e as te lesystem by defaull When
pgacing from olde frmare ploase backup your fes st and efhr raso 3l flash before upgrading,or afer
PG execue o £51£52 ke (o). Ao nole ha 1. 12 and earle il work on modes Wi Th o
more o flash, whie v1.13 equires 2 o more.

o e598266-20200811-41.13.5i (e, map) atest)

_images/noconsole.png
®

Run a project to enable the console

_images/menuitems.png
Wyliodrin API
| Resistor color code
Send feedback

Use Advanced Mode

About

_images/nodeMCU_3.png
{23 NodeMcy pyfiasher

e v
st fcom B
NodeMCU firmmare. |'C:\Users) \Documents\micropython\esp8266-20191220-v1.12.bin Browse.
Baud rste O Os60 O @115200 023060 Odeoeo0 092160
fahmosk® OQudUO(G0) ®0ull0©O) il Otk 0OUT)
Eueton ©ne Oyesviesaldon
» T odoicy
G

Detecting cnip type. . Eme26E
cnip 1o Essaceex

UpLcading scub.
Running scub.
Stub running
contiquring.

o of dace verifiea.

Leaving. ..

Weote 515520 byves (304070 compressed) at OX0000000 i 35.7 second|

Firmare successfully flashed. Unplug/zeplug or zeset device

Welcome to NodeMCU Pyfesher 40

_images/nodeMCU_mac.png
LEX] NodeMCU PyFlasher

Serial port (looveusinovsoouner [

NodeMCU FITMEIE v marcelstoerfDounioadsinodemcu-dev-17-modes- 2019-02-10-13- | Browse.
Baudrate 9600 §7600 74880 11200 1230400 1460800 © 21600
Flash mode O Quad 0 (210) ©Dual 0 (010) Dual Output (DOUT)
Erasetasn O yes, wpes al ata

Fash NodolCU
& Serial port. /aev/cu. SLAY_USHEOUARE

Comnecting........_
Detecting chip type... ESPO266
Chip in ZsPazéeEr

Paturas: Wiri

Gplosding seu. .

Running seub.

Stub rumning,
Cranged:

Contiguring flash size.
Flash parans set to 0x0230
Conprassed 499712 bytes to 326351
Mroke 459712 byses (326351 compros
Hash of data veritied.

2) st 0200000000 n 5.0 seconds (af

Staying in bootloader.
Pirmiare sucossstally flashed. Unplug/replug or resst device
%o meiten back 10 noreal boot mode.

Wetoarme o NodeMCU Pyftesher 40

_images/nodeMCU_1.png
T Nocemcu pylasner

e wep
setpot
—

Budrte
Fashmode®
e o

Consle

[com

[

(i i ot pert o e e

Osso Ostaw O76w @11s200 QB0 Odetsro ORIE0
OQudl0(@0) ®0ulVO©O) O us Cutput BOUT)

@no Oyes wipesadote

Fn NosdeCy-

Comnece your device

Wekcome to NodeMCU Pyflasher 40

_images/nodeMCU_2.png
3 NodeMCU Pyflasher
Fie Hep

Seralpor come

NodeCU firwae |G n, — Documentiicrophon 2 20512612

Badte Osm Os0 Omieso @m0 Ozwo O O

_images/pinlayout.png
APPLICATION

PIN LAYOUT SHELL

Raspberry Pi 2 Model B (J8 Header) pinout
WiringPi BCM(Name) Physical Physical BCM(Name) WiringPi

3v3 Power DO |~ svrower
8 BCM2(sDA) OO |- svrower
9 BM3(sa) O O|> cround
7 scvaeeeko) ~ CONMEIN = Bcmi s (mxo) 15
Ground 10 0| BCM 15 (RXD) 16
o BM17 =10 O BCMIB(PCM C) 1
2 2 sev27 (pev o) = (@O = Ground
3e 3 Bm22 OO vz 4
%g 3v3 Power | ©) o) EREEYEN 5
e 12 ecviowos) 2O E Ground
% § 13 BCM9(MISO) Bl © ° B BCM 25 6
< 1 eemuay & HOMO) BCM 8 (CE0) 10
. Ground <10 O BCM 7 (CE1) 1
scvo(oso) 5 OMOM® scm1(o_so)
ervemer n__ ems OO orom
2 Beve & o) o BN 2
23 BCM13 8 ° ° & Ground
24 BcM1s(miso) # ~°’o 8 BeMie 27

i

25 BCM26 BCM20(MOs) 28

3

Ground BcM21(sclk) 29

_images/noshell.png
Connect to a device to enable the shell

_images/picopi.png

_images/raspberryPiSimulatorTab.png
X
RaspberryPi > [0) o

raspoemypi_simutor

_images/raspberrypi.png

_images/plugins.png
) File Edit Selection View Go Debug T

[e

TR
O oo
> wscode
> docs
i .
B
ovphgns

chat
E:? console

dashboard
® dashboard.graph.extra

dashboard.graph.gauge
dashboard.graph.ine
dashboard.graphslider
dashboard.graph.speedometer
dashboard.graph.switch
‘dashboard.graph.thermometer
‘dashboard.graph.vumeter
device.rpk
devicewyapp
device wyapp.beagleboneblack
device wyapp.raspberrypi
devicewyapp.serial
device wyapp.ssh
device wyapp.udooneo
device wyapp.websocket

_images/pop-up.png
RaspberryPi
STUDIO | comecre ‘ ‘

TestBadApp APPLICATION ~ DASHBOARD ~ NOTEBOOK SCHEMATICS SHELL RASPBERRY PI

= LcdAnd 2 Buttons And 2 Leds

Pins Name Color
25,12, 16,20, 21, 5V Lco -
4 BUTTON -
BUTTON -
Load Simulator = ——_—
&
LED BLUE
ADD SVG FILE ADD XML NETLIST

UPLOAD CLOSE

_images/registerToolbarButton.png

_images/rpi_connect.png
WsTUDIO s

Raspbian GNU/Linux 10 raspberrypi ttyl

raspberrypi login: pi
Passuord

Last login: Ued Oct 9 08:29:37 BST 2019 on ttyl

Linux raspberrypi 4.14.79 #1 Sun Jan 27 22:47:58 UTC 2019 arnubl

The prograns included with the Debian GNU/Linux system are free softuare;
the exact distribution terns for each progran are described in the
individual files in susr/share/doc/x/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO UARRANTY, to the extent
pernitted by applicable lau.

SSH is enabled and the default passuord for the ’pi’ user has mot been changed.
This is a security risk - please login as the *pi’ user and type ’passud’ to se
a new passuord.

efkill: camnot open sdev/rfkill: No such file or directory
cfkill: camnot read sdev/rfkill: Bad file descriptor
piGraspberrypi:~ §

pi@raspberryp: $ sudo systemctl start ssh

T —

_images/raspberrypi_emulator.png

_images/registerStatusButton.png

_images/schemaJustCreated.png
RaspberryPi
STUDIO S : e e it

TestBadApp APPLICATION ~ DASHBOARD ~ NOTEBOOK SCHEMATICS SHELL RASPBERRY PI

= LedAnd Button

Pins Name Color
4 LED RED
22 BUTTON

_images/schematicExample.png
STUDIO | eomeeren

TestBadApp

= LcdAnd 2 Buttons And 2 Leds

_images/adafruit_clue.jpeg

_images/showError.png
A The device: AwesomeDevice was unable to connect. €@

_images/showNotification.png
Q The title of your workspace is: Workspace Title Q

_images/showConfirmationPrompt.png
Are you sure you want to exit?

_images/showDialog.png
Buttol log Title

Please input your text here:

CLOSE

_images/tabs.png
APPLICATION DASHBOARD NOTEBOOK SCHEMATICS SHELL

_images/toolbar.png
CONNECT

a/sTubio = 0

_images/showPrompt.png
Rename Project

BACK OK

_images/tableExample.png
RaspberryPi >

APPLICATION ~ DASHBOARD ~ NOTEBOOK SCHEMATICS

LL RASPBERRYPI

Pins Name Color
25,12,16, 20,21, 5V Lco .
4 BUTTON -
17 BUTTON -
22 LED ORANGE

24 LED BLUE

_images/udooneo.png

_images/shellTerm.png
Title: pi@raspberrypi: ~

rilesystem
/dev/root
jevtmpfs

mpfs

mpfs

mpfs

mpfs
/dev/mmcbl1k0pl
mpfs

ieraspberrypi:~ § df

Size
3.6G
460M
464M
464M
5.0M
464M

41M

93M

-h -x sgashfs
Used Avail Use$
2.4¢ 1.1 70%
0 460M 0%
0 46aM 0%
6.3M 458M 2%
4.0K 5.0M 1%
0 46aM 0%
23M 19M 55%
0 93 0%

Mounted on

/

/dev

/dev/shm

/run

/run/lock
/sys/£s/cgroup
/boot
/run/user/1000

>i@raspberrypii~ § ping www.google.com
DING www.google.com (172.217.18.164) 56(84) bytes of data.
(172.217.18.164) : icmp_seq=1 ttl=52 time=29.4 ms

54 bytes from fral5s29-in-f4.1e100.net
54 bytes from fral5s29-in-f4.1e100.net
54 bytes from fral5s29-in-f4.1e100.net
54 bytes from fral5s29-in-f4.1e100.net

(172.217.18.164) : icmp_seg=2 tt1=52 time:
(172.217.18.164) : icmp_seg=3 tt1=52 time:

9.4 ms
9.4 ms

(172.217.18.164) : icmp_seg=4 tt1=52 time=29.7 ms

_images/wyliolab.png
- o
seoy

2
D12/ ;-

R
09~ D10~ A
R1 1

() BUTTON BUTTON
RI3 RIS

_static/ajax-loader.gif

_images/verify_python.png
=3 python3

Python 3.6.9 (default, Jul 17 2626, 12:56:27)
[GCC 8.4.0] on inux
Type “help”, “copyright
>>> print('Hello)
Hello

[2]+ Stopped python3.

“credits” or "license" for more tnformation.

_images/wyliodrin.png
STUDIO

raspberrypi

192.168.1.188

main.visual

» Logic
I Loops
Math
Text
Lists
I Colour
I Objects

Screen and Keyboard

I Variables

Functions

Date and Hour

HTTP

I Pi Camera
I Arduino

project exit with error 0

set (58D to

APPLICATION

%

1 # This file was automatically gen
g # You may edit it, it \-
4 from datetime import

5

6 list2

7 x

8

9

16 1list2 = [1, 2, 3]

11

12 x = sum(list2)
13- if x ((datetime.now().weekday()
14 print()

15~ else:
16 print()
17

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_images/verify_dmesg.png
[30487.906511] ratd6: xor() 20819 MB/s, rmw enabled

(007 000 TG, Gitng v recovery’atgorthn

30437:531305) 70r+ autemaiicetiy uskng Best checksumtng functlon avs

e s L

| Sores.e52252] us Uls disconnect, device nunber 22

{10760 720050 b ST e ol sped U5 device manber 23 ustg uhct_hed

[30767.017016] usb New USB device found, idvendor=eeof, {dProduct=6008, b

cabevices .08

FS0TET ST usb 2-2.15 Mew use device strtg

5

Borer.o1r019) ush 2

Fo7er-orots] vab 3

[30767.017026] usb 2.
;
H

ey

Product=2, Sertalnunber

Product: Virtual Bluetooth Adapter
Manufacturer: Vhware

Sertaliunber: 000650268328

new full-speed Us8 device nunber 24 ustng uhcl_hcd
New UsB device found, idvendor=1a8s, {dProduct=7s23, b

[36783.090645] usb
(30783 408598] usb
cddevice= 2.54
(30783908605 usb 2-2.2: New UsB device string:
-

[30783.408609] usb 2-2.2: Product: Use2.6-sertal

{30787 473407 usbcore: regtstered new interface driver ch3al
[50783.474111] usbserial: USB Sertal support regtstered for ch3di-uart
[30783.474464] chaa1 2-2.2:1.6: ch3dl-uart converter detected
[30763.494805] ush 2-2.21 ch341-uart converter now attached to ttyUsso

Mfr=s, Product=2, SertalNunber

_images/verify_pip3.png
Usage:
pip3 <command> [opttons]

Conmands:
tnstall
dounload
untnstall
freeze
st
show
check

ctes..
conflg
search
wheel
I

Install packages.
Dounload packages..

Untastall packages.

output installed packages in requirenents fornat.
List tnstalled packages.

Shaw tafornatton about installed packages.

Verify tnstalled packages have conpatible dependen

Hanage local and global configuration.
Search PyP for packages.

Bulld wheels fron your requirenents.
e Forn O fode s

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/down